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1. Introduction

Supersymmetry (SUSY) and its realization in theR-parity conserving Minimally Supersym-
metric Standard Model is a well-studied and motivated extension of the Standard Model (SM). It
could provide a solution to shortcomings of the SM such as the absence of a dark matter candidate
and it might stabilize the electroweak scale against quantum corrections. The search for SUSY
at the TeV scale is therefore a central part of the physics program of the Large Hadron Collider
(LHC). At hadron colliders, the production of squarks and gluinos, thesuperpartners of quarks and
gluons, is expected to be the dominant signature. Current LHC limits exclude gluino masses up to
mg̃ = 1.3 TeV and superpartners of the quarks of the first two generations below mq̃ . 850 GeV.
Equal squark and gluino masses can be excluded up tomg̃ ∼ 1.7 TeV [1]. However, these bounds
depend on assumptions e.g. on the mass of the lightest supersymmetric particle and can be evaded
for instance by compressed mass spectra. The search for SUSY will therefore remain a focus of the
13–14 TeV run of the LHC that has the potential to discover or exclude squarks and gluinos in the
3 TeV range. Turning exclusion limits on production cross sections into bounds on superparticle
masses requires precise predictions for these cross sections. In this contribution we report on the
status of predictions for squark and gluino production at the LHC and present results of a combined
NNLL resummation of soft-gluon and Coulomb corrections [2].

2. Squark and gluino production at the LHC

At hadron colliders, light-flavour squarks and gluinos, denoted jointly bys̃, s̃′ ∈ {q̃, ¯̃q, g̃}, can
be pair-produced through partonic production processes of the formpp′ → s̃s̃′X from the incoming
partonsp, p′ ∈ {q, q̄,g}. The relevant production channels at leading order (LO) are

gg, qq̄→ q̃ ¯̃q, qq→ q̃q̃, gq→ g̃q̃, gg, qq̄→ g̃g̃, (2.1)

and the corresponding charge-conjugated channels for squarks. Flavour indices of quarks and
squarks have been suppressed. We use a common massmq̃ for the light-flavour squarks and do not
consider the production of stop pairs which has been discussed in [3]. In the upper plots in Figure 1
the relative contribution of the processes (2.1) to the inclusive squark and gluino production cross
sectionσSUSY= σq̃ ¯̃q+q̃q̃+g̃q̃+g̃g̃ is shown for the LHC with

√
s= 8 TeV centre-of-mass energy. The

left-hand plot displays the relative contributions of the processes (2.1) as a function of a common
squark and gluino mass, while in the right-hand plot the relative contributions are shown as a func-
tion of the squark-gluino mass ratio. The results for theK-factorKNLO =σNLO/σLO for the next-to-
leading order (NLO) SUSY-QCD corrections [4] obtained with the program PROSPINO [5] in the
lower plots in Figure 1 show that the NLO corrections can be of the order of100% of the tree-level
cross section.

The large NLO K-factors can be attributed to the enhancement of radiativecorrections in the
threshold limitβ ≡

√

1−4M2/ŝ→ 0, with the average sparticle massM = 1
2(ms̃+ms̃′) and the

partonic centre-of-mass energy ˆs. In this limit the partonic cross section is dominated by soft-gluon
emission off the coloured initial- and final-state particles and by Coulomb interactions of the two
non-relativistic heavy sparticles in the final state, which give rise to singular terms of the form
αs ln2,1 β andαs/β , respectively. The radiative corrections in the threshold limit can be writtenin
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Figure 1: Top: Relative contribution of the different squark and gluino production processes to the total
Born production rate of coloured sparticles,σSUSY, for the LHC with

√
s= 8 TeV. Below: NLOK-factor for

squark and gluino production processes at the LHC. The left plots show the mass dependence formq̃ = mg̃ =

M while the right plot shows the dependence on the ratiomg̃/mq̃ for a fixed average mass(mq̃+mg̃)/2 =

1.6 TeV. In theK-factors the MSTW2008NLO PDFs [6] have been used for the LO andNLO cross sections.

a simple and process-independent form using a colour decomposition of the total partonic cross
section,

σ̂pp′(ŝ,µ f ) = ∑
Rα

σ̂ (0),Rα
pp′ (ŝ,µ f )

{

1+
αs

4π
f (1),Rα
pp′ (ŝ,µ f )+ ...

}

, (2.2)

whereµ f is the factorization scale,Rα are the irreducible representations in the decomposition
R⊗R′ = ∑Rα of the product of theSU(3) representationsRandR′ of the two final-state sparticles,
andσ̂ (0),Rα

pp′ are the Born cross sections projected on the colour channelRα [7, 8]. The NLO scaling

functions f (1),Rα
pp′ assume a simple form in the threshold limit [9]:

f (1),Rα
pp′ (ŝ,µ f ) = −2π2DRα

β

√

2mr

M
+4(Cr +Cr ′)

[

ln2
(

8Mβ 2

µ f

)

+8− 11π2

24

]

−4[CRα +4(Cr +Cr ′)] ln

(
8Mβ 2

µ f

)

+12CRα +h(1),Rα
pp′ +O(β ). (2.3)

Heremr =ms̃ms̃′/(ms̃+ms̃′) is the reduced mass,r andr ′ are the colour representations of the initial
partonsp andp′, andCR is the quadratic Casimir invariant for a representationR. The coefficients
of the Coulomb potential for sparticles in the representationsRandR′ in the colour channelRα read
DRα = 1

2(CRα −CR−CR′) where negative (positive) values correspond to an attractive (repulsive)

potential. The process-dependent coefficientsh(1),Rα
pp′ have been recently computed for all squark

and gluino production processes [10 – 13]. The singular threshold corrections, i.e. all terms in (2.3)
apart from constants, usually dominate the total NLO cross section and differ from the exact NLO
result by typically only 10−30% [3]. This motivates the computation of the higher-order threshold-
enhanced terms, as discussed in the remainder of this contribution.
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3. Joint soft and Coulomb resummation

Near the partonic production thresholdβ → 0 the conventional perturbative expansion inαs

breaks down and the perturbative series has to be rearranged by treating both threshold logarithms
αs lnβ and Coulomb correctionsαs/β as quantities of order one. The accuracy of the rearranged
perturbative series can be defined by representing the resummed crosssection schematically as

σ̂pp′ = σ̂ (0)
pp′

∞

∑
k=0

(
αs
β

)k
exp

[

lnβ g0(αs lnβ )
︸ ︷︷ ︸

(LL)

+g1(αs lnβ )
︸ ︷︷ ︸

(NLL)

+αsg2(αs lnβ )
︸ ︷︷ ︸

(NNLL)

+ . . .
]{

1+αscNNLL + . . .
}

.

(3.1)
Methods for the separate resummation of threshold logarithms [14 – 16] and Coulomb correc-
tions [17] are well known. Applications to squark and gluino production include NLL resummation
of threshold logarithms [7, 8, 18], Coulomb resummation [7, 19, 18, 11], approximate NNLO cal-
culations [20, 12], and NNLL resummation of threshold logarithms [10, 21, 2, 22, 23].

The combined NLL resummation of Coulomb and soft effects has been performed for squark-
antisquark production in [18] and all other processes in [3], where it was found that Coulomb
corrections and soft-Coulomb interference can be as large as the soft corrections alone. In the
following, we discuss the extension of this result to NNLL. Up to this accuracy, partonic cross
sections in the limitβ → 0 factorize into a hard functionHRα , a soft functionWRα , and a Coulomb
functionJRα [24, 18]:

σ̂pp′(ŝ,µ f ) = ∑
Rα

HRα
pp′(mq̃,mg̃,µ f )

∫

dω JRα (Mβ 2− ω
2
)WRα (ω ,µ f ) . (3.2)

The hard function encodes the partonic hard-scattering processes and is related to squared on-
shell scattering amplitudes at threshold. The potential function sums the exchange of Coulomb
gluons associated with corrections of order(αs/β )n while the soft function sums the threshold
logarithms. The convolution of the soft- and potential functions accounts for the energy loss of
the squark/gluino system due to soft gluons with energy of the orderMβ 2. Near threshold, soft-
gluon radiation is only sensitive to the total colour stateRα of the non-relativistic squark/gluino
system, as has been shown to all orders in the strong coupling [24], consistent with explicit one-
loop calculations [15, 7, 8]. The formula (3.2) has been derived for particles dominantly produced
in anS-wave, i.e. with a cross section̂σ ∼ β , which is the case for all production channels of light-
flavour squarks and gluinos, and for processes with a leadingP-wave contributionσ̂ ∼ β 3 [3], as
for stop-antistop production from a quark-antiquark initial state.

Resummation of threshold logarithms is performed by evolving the soft functionfrom a soft
scaleµs ∼ Mβ 2 to a hard-scattering scaleµ f ∼ M using a renormalization-group equation derived
in [24] with results from [25] (equivalent results have been obtained independently in the traditional
Mellin-space approach [26]). The hard function is evolved from a scale µh ∼ 2M to µ f . In the
momentum-space formalism [16] the resummed cross section can be written as

σ̂ res
pp′(ŝ,µ f ) =∑

Rα

HRα
pp′(µh)URα (µh,µs,µ f )

(
2M
µs

)−2η
s̃Rα (∂η ,µs)

e−2γEη

Γ(2η)

∞∫

0

dω
JRα (Mβ 2− ω

2 )

ω

(
ω
µs

)2η
.

(3.3)
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Resummation at NNLL accuracy requires the expansions of the hard function and the Laplace-
transformed soft function [24] up to NLO,

HRα
pp′(µh) = HRα (0)

pp′ (µh)

[

1+
αs(µh)

4π
hR(1)

pp′ (µh)+O(α2
s )

]

, (3.4)

s̃Rα (ρ,µ) =
∫ ∞

0−
dωe−sω WRα (ω ,µ) = 1+

αs

4π

[

(Cr +Cr ′)

(

ρ2+
π2

6

)

−2CRα (ρ −2)

]

+O(α2
s ),

(3.5)

with s= 1/(eγE µeρ/2). The one-loop hard coefficients are the same as in (2.3). The functionsURα

andη contain logarithms of the ratios of the various scales, the explicit expressions at NNLL can
be found in [16].

For NNLL accuracy, the NLO potential function is required that can be written as [27]

JRα (E) = 2Im
[

G(0)
C,Rα

(0,0;E)∆nC(E)+G(1)
C,Rα

(0,0;E)+ . . .
]

, (3.6)

whereG(0)
C,Rα

is the solution to the Schrödinger equation with the leading Coulomb potential, re-

summing all(αs/β )n corrections. The functionG(1)
C,Rα

sumsαs× (αs/β )n corrections by solving
perturbatively the Schrödinger equation with one insertion of the NLO Coulomb potential,

δṼ(p,q) =
4πDRα αs(µ)

q2

αs(µ)
4π

(

a1−β0 ln
q2

µ2

)

, (3.7)

whereβ0 is the one-loop beta-function coefficient, anda1 =
31
9 CA− 20

9 nl Tf . The factor∆nC arises
from non-Coulomb NNLO potential terms [28]. For squark and gluino production, these read [2]

δṼNNLO(p,q) =
4πDRα αs(µ2)

q2

[
παs(µ2)|q|

8mr

(
DRα

2
2mr

M
+CA

)

+
p2

ms̃ms̃′
− q2

8m2
s̃m2

s̃′
(2ms̃ms̃′ +m2

s̃ c2(ms̃′)+m2
s̃′ c2(ms̃))

+
1

16ms̃ms̃′
[σ i ,σ j ]q j ⊗ [σ i ,σk]qk+ . . .

]

, (3.8)

where terms not contributing to squark and gluino production processes are not shown. For scalars
the spin-dependent terms are set to zero. The matching coefficientc2 has the tree-level value zero
(one) for scalars (fermions). Projecting on the relevant spin states, thenon-Coulomb correction
in (3.6) is obtained as

∆nC(E) = 1+α2
s (µC) lnβ

[
−2D2

Rα (1+vspin)+DRαCA
]

θ(E), (3.9)

with the Coulomb scale given byµC =max{2mr |DRα |αs(µC),2β
√

2mrM} [3]. The spin-dependent
coefficient for the squark and gluino production processes is given by

vspin(q̃ ¯̃q) = vspin(q̃q̃) =−2mr

4M
, vspin(q̃g̃) =

1
2

(
m2

g̃

(mq̃+mg̃)2 −1

)

,

vspin((g̃g̃)S=0) = 0, vspin((g̃g̃)S=1) =−2
3
.

(3.10)
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Figure 2: Higher-order corrections relative to the NLO cross sectionfor squark and gluino production
at the LHC with

√
ŝ= 8 TeV for full NNLL resummation (solid blue), NNLL with fixed-order Coulomb

corrections (dotted red), approximate NNLO (dot-dashed pink), and NLL (dashed orange). The NLL and
NLO (NNLOapp and NNLL) cross sections are computed with the NLO (NNLO) MSTW2008 PDFs.

The gluino pairs are produced with spinS= 0 for the symmetric colour representations 1, 8s, 27
and withS= 1 for anti-symmetric colour representations 8a, 10 (see e.g. [11]). An additional term
of the same order has been pointed out recently in the context of top-quark pair production [29].
This term is not yet included in our results, but can be treated in the same way.

In the colour channels with an attractive Coulomb potential, the Coulomb Green function
develops bound-state poles below threshold. We include these bound-state contributions and con-
volute them with the soft corrections as described in [27]. If the finite decay width of squarks and
gluinos is taken into account, the bound-state poles are smeared out. This has been investigated at
NLL accuracy in [30] with the conclusion that forΓs̃/ms̃. 5% the uncertainties due to finite width
effects are smaller than the uncertainties of the NLL calculation.

4. Squark and gluino production at NNLL

We have implemented the NNLL resummation discussed in Section 3 following the treatment
of top-quark pair production in [27, 31]. A public program based ontopixs [31] is in preparation.
As in the previous NLL resummation [3], the LO hard functions are expressed in terms of the exact
colour separated Born cross sections. No resummation is performed for colour channels that are
suppressed at threshold. The convolution of the resummed partonic cross section with the PDFs
is regularized as discussed in [27]. The NNLL cross section is matched to the sum of the exact
NLO cross section [4] fromPROSPINO and the approximate NNLO correction [9] where double
counting is avoided by subtracting the NNLO-expansion of the resummed cross section. In order
to see the impact of Coulomb resummation, we also consider an approximation NNLLfixed-C where

6
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Figure 3: Total theoretical uncertainty of the NLO approximation (dotted black), NLL (dashed orange), and
NNLL (solid blue) resummed results at the LHC with

√
s= 8 TeV. All cross sections are normalized to one

at the central value of the scales.

the product of hard and Coulomb corrections is replaced by its expansionup toO(α2
s ). The scale

uncertainty of the NNLL predictions is estimated by varyingµ f , µh, andµC from half to twice their
default values. We use a running soft scaleµs = ksM max{β 2,β 2

cut} [24] with ks = 1. The default
value of βcut is determined following [27] and the resulting uncertainty is estimated by setting
ks = 0.5,2 as well as varyingβcut by ±20% and taking the envelope of several resummed and
fixed-order approximations. As a measure of power-suppressed terms, the non-relativistic energy
Mβ 2 is replaced byE =

√
ŝ−2M. Finally, a constant term±|hR(1)

pp′ |2 is added as an estimate of
unknown NNLO corrections beyond the threshold limit. The uncertainties from the various sources
are added in quadrature.

Our results for the K-factors beyond NLOKX = σX/σNLO with X =NLL, NNLL, NNLL fixed-C,
and NNLOapp for the four squark and gluino production processes are shown in Figure 2. The re-
sults show a full NNLL correction of up to 25% relative to the NLL results. The effect of Coulomb
resummation can be important in particular for squark-antisquark and gluino-pair production. The
comparison to the approximate NNLO results shows that corrections beyondNNLO become size-
able beyond sparticle masses of∼ 1.5 TeV. The NNLLfixed-C results appear to be in good agreement
with results of the Mellin-space approach to resummation [23] where a similar approximation is
used. An exception is gluino-pair production, where our result differsby about 10% from the one
in [23]. As can be seen in Figure 3 the relative uncertainty is reduced from up to 30% at NLO, to
at most 20% at NLL and to the 10%-level at NNLL.

References

[1] G. Aad et al. [ATLAS Collaboration],arXiv:1405.7875.

[2] M. Beneke, P. Falgari, J. Piclum, C. Schwinn, and C. Wever, in preparation and
PoSRADCOR2013 (2014) 051 [arXiv:1312.0837].

7

http://arxiv.org/abs/1405.7875
http://pos.sissa.it/archive/conferences/197/051/RADCOR%202013_051.pdf
http://arxiv.org/abs/1312.0837


P
o
S
(
L
L
2
0
1
4
)
0
6
0

Higher-order soft and Coulomb corrections to squark and gluino production at the LHC Jan Piclum

[3] P. Falgari, C. Schwinn, and C. Wever,JHEP1206 (2012) 052 [arXiv:1202.2260].

[4] W. Beenakker et al.,Nucl. Phys. B492 (1997) 51 [hep-ph/9610490].

[5] W. Beenakker, R. Höpker, and M. Spira,hep-ph/9611232.

[6] A. D. Martin et al.,Eur. Phys. J. C63 (2009) 189 [arXiv:0901.0002].

[7] A. Kulesza and L. Motyka,Phys. Rev. Lett.102 (2009) 111802 [arXiv:0807.2405]
andPhys. Rev. D80 (2009) 095004 [arXiv:0905.4749].

[8] W. Beenakker et al.,JHEP0912 (2009) 041 [arXiv:0909.4418] andJHEP1008 (2010) 098
[arXiv:1006.4771].

[9] M. Beneke et al.,Phys. Lett. B690 (2010) 483 [arXiv:0911.5166].

[10] W. Beenakker et al.,JHEP1201 (2012) 076 [arXiv:1110.2446].

[11] M. R. Kauth et al.,Nucl. Phys. B857 (2012) 28 [arXiv:1108.0361].

[12] U. Langenfeld, S.-O. Moch, and T. Pfoh,JHEP1211 (2012) 070 [arXiv:1208.4281].

[13] W. Beenakker et al.,JHEP1310 (2013) 120 [arXiv:1304.6354].

[14] G. F. Sterman,Nucl. Phys. B281 (1987) 310;
S. Catani and L. Trentadue,Nucl. Phys. B327 (1989) 323.

[15] N. Kidonakis and G. F. Sterman,Nucl. Phys. B505 (1997) 321 [hep-ph/9705234];
R. Bonciani et al.,Nucl. Phys. B529 (1998) 424 [hep-ph/9801375].

[16] T. Becher and M. Neubert,Phys. Rev. Lett.97 (2006) 082001 [hep-ph/0605050];
T. Becher, M. Neubert, and G. Xu,JHEP0807 (2008) 030 [arXiv:0710.0680].

[17] see e.g. A. H. Hoang et al.,Eur. Phys. J. direct C2 (2000) 1 [hep-ph/0001286].

[18] M. Beneke, P. Falgari, and C. Schwinn,Nucl. Phys. B842 (2011) 414 [arXiv:1007.5414].

[19] K. Hagiwara and H. Yokoya,JHEP0910 (2009) 049 [arXiv:0909.3204];
M. R. Kauth, A. Kress, and J. H. Kühn,JHEP1112 (2011) 104 [arXiv:1108.0542].

[20] U. Langenfeld and S.-O. Moch,Phys. Lett. B675 (2009) 210 [arXiv:0901.0802];
U. Langenfeld,JHEP1107 (2011) 052 [arXiv:1011.3341];
A. Broggio et al.,JHEP1307 (2013) 042 [arXiv:1304.2411].

[21] T. Pfoh,JHEP1305 (2013) 044 [arXiv:1302.7202].

[22] A. Broggio et al.,JHEP1403 (2014) 066 [arXiv:1312.4540];
C. Kim et al.,Phys. Rev. D89 (2014) 075010 [arXiv:1401.1284].

[23] W. Beenakker at al.,arXiv:1404.3134.

[24] M. Beneke, P. Falgari, and C. Schwinn,Nucl. Phys. B828 (2010) 69 [arXiv:0907.1443].

[25] T. Becher and M. Neubert,Phys. Rev. D79 (2009) 125004 [arXiv:0904.1021];
N. Kidonakis,Phys. Rev. Lett.102 (2009) 232003 [arXiv:0903.2561].

[26] M. Czakon, A. Mitov, and G. F. Sterman,Phys. Rev. D80 (2009) 074017 [arXiv:0907.1790].

[27] M. Beneke et al.,Nucl. Phys. B855 (2012) 695 [arXiv:1109.1536].

[28] M. Beneke, A. Signer, and V. A. Smirnov,Phys. Lett. B454 (1999) 137 [hep-ph/9903260].

[29] P. Bärnreuther, M. Czakon, and P. Fiedler,JHEP1402 (2014) 078 [arXiv:1312.6279].

[30] P. Falgari, C. Schwinn, and C. Wever,JHEP1301 (2013) 085 [arXiv:1211.3408].

[31] M. Beneke et al.,JHEP1207 (2012) 194 [arXiv:1206.2454].

8

http://dx.doi.org/10.1007/JHEP06(2012)052
http://arxiv.org/abs/1202.2260
http://dx.doi.org/10.1016/S0550-3213(97)00084-9
http://arxiv.org/abs/hep-ph/9610490
http://arxiv.org/abs/hep-ph/9611232
http://dx.doi.org/10.1140/epjc/s10052-009-1072-5
http://arxiv.org/abs/0901.0002
http://dx.doi.org/10.1103/PhysRevLett.102.111802
http://arxiv.org/abs/0807.2405
http://dx.doi.org/10.1103/PhysRevD.80.095004
http://arxiv.org/abs/0905.4749
http://dx.doi.org/10.1088/1126-6708/2009/12/041
http://arxiv.org/abs/0909.4418
http://dx.doi.org/10.1007/JHEP08(2010)098
http://arxiv.org/abs/1006.4771
http://dx.doi.org/10.1016/j.physletb.2010.05.038
http://arxiv.org/abs/0911.5166
http://dx.doi.org/10.1007/JHEP01(2012)076
http://arxiv.org/abs/1110.2446
http://dx.doi.org/10.1016/j.nuclphysb.2011.11.024
http://arxiv.org/abs/1108.0361
http://dx.doi.org/10.1007/JHEP11(2012)070
http://arxiv.org/abs/1208.4281
http://dx.doi.org/10.1007/JHEP10(2013)120
http://arxiv.org/abs/1304.6354
http://dx.doi.org/10.1016/0550-3213(87)90258-6
http://dx.doi.org/10.1016/0550-3213(89)90273-3
http://dx.doi.org/10.1016/S0550-3213(97)00506-3
http://arxiv.org/abs/hep-ph/9705234
http://dx.doi.org/10.1016/S0550-3213(98)00335-6
http://arxiv.org/abs/hep-ph/9801375
http://dx.doi.org/10.1103/PhysRevLett.97.082001
http://arxiv.org/abs/hep-ph/0605050
http://dx.doi.org/10.1088/1126-6708/2008/07/030
http://arxiv.org/abs/0710.0680
http://arxiv.org/abs/hep-ph/0001286
http://dx.doi.org/10.1016/j.nuclphysb.2010.09.009
http://arxiv.org/abs/1007.5414
http://dx.doi.org/10.1088/1126-6708/2009/10/049
http://arxiv.org/abs/0909.3204
http://dx.doi.org/10.1007/JHEP12(2011)104
http://arxiv.org/abs/1108.0542
http://dx.doi.org/10.1016/j.physletb.2009.04.002
http://arxiv.org/abs/0901.0802
http://dx.doi.org/10.1007/JHEP07(2011)052
http://arxiv.org/abs/1011.3341
http://dx.doi.org/10.1007/JHEP07(2013)042
http://arxiv.org/abs/1304.2411
http://dx.doi.org/10.1007/JHEP05(2013)044
http://arxiv.org/abs/1302.7202
http://dx.doi.org/10.1007/JHEP03(2014)066
http://arxiv.org/abs/1312.4540
http://dx.doi.org/10.1103/PhysRevD.89.075010
http://arxiv.org/abs/1401.1284
http://arxiv.org/abs/1404.3134
http://dx.doi.org/10.1016/j.nuclphysb.2009.11.004
http://arxiv.org/abs/0907.1443
http://dx.doi.org/10.1103/PhysRevD.79.125004
http://arxiv.org/abs/0904.1021
http://dx.doi.org/10.1103/PhysRevLett.102.232003
http://arxiv.org/abs/0903.2561
http://dx.doi.org/10.1103/PhysRevD.80.074017
http://arxiv.org/abs/0907.1790
http://dx.doi.org/10.1016/j.nuclphysb.2011.10.021
http://arxiv.org/abs/1109.1536
http://dx.doi.org/10.1016/S0370-2693(99)00343-3
http://arxiv.org/abs/hep-ph/9903260
http://dx.doi.org/10.1007/JHEP02(2014)078
http://arxiv.org/abs/1312.6279
http://dx.doi.org/10.1007/JHEP01(2013)085
http://arxiv.org/abs/1211.3408
http://dx.doi.org/10.1007/JHEP07(2012)194
http://arxiv.org/abs/1206.2454

