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1. Introduction

Activity in recent years in the study of the perturbative and non-perturbative structure of
QCD has concentrated on the vertex functions. At one loop the early work of [1] was useful
for Schwinger-Dyson analysis of the n-point tower of equations whose solution would in princi-
ple provide the full properties of the theory. In practice in order to extract some understanding of
the behaviour of the n-point functions approximations have to be made and several ansätze for the
Lorentz structure of the embedded vertices are used. One is the omission of the quartic vertex. In-
deed this assumption invariably appears to be good. However, with the improvement in techniques
both analytically and numerically it is now becoming fashionable to question to what extent such
assumptions are valid, [2, 3]. Equally lattice studies of vertex functions have improved in recent
years to the extent that the infrared behaviour of the vertex functions are forming laboratories for
testing ideas for, say, gluon confinement. Therefore to aid both areas of investigation the perturba-
tive structure of the 3-point vertices of QCD have been computed at two loops in various config-
urations [4, 5, 6, 7, 8, 9, 10, 11, 12]. This has primarily been in linear covariant gauges. Though
certain nonlinear gauges, [13, 14], have also been analysed. In this article we give a snapshot of
recent activity in the perturbative approach to vertex functions studies. In particular we concentrate
on the full two loop off-shell 3-point functions of QCD for a general external momentum configu-
ration. Full details are provided in [15]. Such expressions should assist Schwinger-Dyson analyses
in exploring the ansätze used therein.

2. 3-point vertices

The QCD 3-point vertex functions of interest are defined by
〈

Aa
µ(p)Ab

ν(q)Ac
σ (−p−q)

〉

= f abcΣggg
µνσ (p,q)

〈

ψ i(p)ψ̄ j(q)Ac
σ (−p−q)

〉

= T c
i jΣ

qqg
σ (p,q)

〈

ca(p)c̄b(q)Ac
σ (−p−q)

〉

= f abcΣccg
σ (p,q) (2.1)

where p and q are the two independent external momenta and we have factored off the common
colour tensor from the Lorentz tensor amplitudes. To use results of basic Feynman integrals which
arise in the computation we introduce the two dimensionless variables x = p2

r2 and y = q2

r2 where
r = − (p+q) and the overall mass scale µ is given by r2 = − µ2. We will also use µ as the scale
which ensures that the coupling constant is dimensionless in d-dimensions when we dimensionally
regularize in d = 4 − 2ε dimensions. For contact with [16] we note that the completely symmetric
point corresponds to x = y = 1.

In order to extract the behaviour of the vertices as functions of our variables as well as to have
a practical algorithm for a computation we decompose the tensor amplitudes into a basis of Lorentz
tensors built from p, q, the metric and, in the case of the quark-gluon vertex, the γ-matrices. For
the respective vertices of (2.1) there are respectively 14, 2 and 6 such tensors which are given
in [15]. The method to reduce the Lorentz amplitudes to scalar functions is to use a projection,
[17]. This means that the constituent Feynman integrals of each vertex function involves at most
scalar products of the loop and external momenta. Thus it is in the ideal form for applying the
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Laporta algorithm, [18], which is the current main computational tool for n-point functions. For
our analysis we have used the REDUZE encoding, [19], and exploited its interface with the symbolic
manipulation language FORM, [20, 21]. The Feynman diagrams are generated with the FORTRAN

package QGRAF, [22]. In the Laporta approach, which in essence is the algebraic solution of towers
of relations between Feynman integrals established by integration by parts, the graphs contributing
to a vertex function are reduced to a small set of master integrals. These invariably are determined
directly. For the 3-point functions there are five basic integral families for the REDUZE setup. At
one loop it is the basic triangle and at two loop there is the non-planar triangle and three ladder
graphs. However, in REDUZE the non-bubble masters are in effect one loop triangles. The two
loop master integrals correspond to one loop triangle graphs with propagators with non-integer
powers. Their ε expansion is known, [23, 24, 25, 26]. However, due to spurious poles arising from
integration by parts the two loop masters are required to O(ε 2), [15]. Although these are known in
harmonic polylogarithm notation, [25], we have extended the ε expansion of [23, 24, 26] for the
full general off-shell case in terms of Lin(z).

Defining

I(α,β ,γ) =
∫

k

1

(k2)α((k− p)2)β ((k +q)2)γ (2.2)

then the one loop master is, [23, 24],

I(1,1,1) = −
1

µ2

[

Φ1(x,y)+Ψ1(x,y)ε +

[

ζ (2)

2
Φ1(x,y)+ χ1(x,y)

]

ε2 + O(ε3)

]

. (2.3)

where Φ1(x,y) involves Li2(z) and Ψ1(x,y) involves Li3(z). The unknown function χ1(x,y) is
not required explicitly as it always occurs with a similar term, χ3(x,y), from the related two loop
master. Within all our two loop computations the following combination always emerges

χ3(x,y)−χ1(x,y) = Φ2(x,y)−
1
2

ln(xy)Ψ1(x,y)+
1
4

[

ln2(x)+ ln2(y)
]

Φ1(x,y) (2.4)

where Φ2(x,y) contains Li4(z), [23, 24, 26]. The general relation agrees with [26] for a simpler
external momentum configuration. For contact with other work, [26, 27], we note that in the
notation of both these articles

χ3(1,1)−χ1(1,1) = H
(2)

31
+ H

(2)
43

=
1
36

ψ ′′′

(

1
3

)

−
2π4

27
(2.5)

where H (n)
j

are the harmonic polylogarithms, [28].
Equipped with this computational algorithm we have determined the full two loop off-shell

3-point vertex functions of QCD in a linear covariant gauge. The full expressions are too long
to record here. Though we note that they are not inconsistent with the earlier direct evaluation
at the full symmetric point, [17]. Also there are in agreement with another external momentum
configuration of [13] which was x = y = 1

ω , r2 = − ωµ2 in the current notation where ω is
an interpolating parameter. More informative is to graphically represent the one and two loop
corrections over a range of momenta for αs = 0.125. This is carried out in Figure 1 for the ghost-
gluon vertex as an example, where Hk(x,y) = Σccg

(k)
(p,q). Clearly at this value of the coupling

constant perturbation theory is valid as is evident by the small corrections. The behaviour of the
other vertex functions is similar.
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Figure 1: Various sections of the Landau gauge ghost-gluon vertex amplitudes for αs = 0.125.

Taking the x → 1 and y → 1 limits of our general expressions we recover the direct symmetric
point renormalization of [17] which extended the previous order computation of [16]. In [16]
the momentum subtraction (MOM) renormalization schemes were defined based on each of the
trivalent QCD vertices. Also the results of [17] agreed with the earlier numerical estimates of the
three loop MOM renormalization group functions of [12]. The latter are constructed as a byproduct
of the two loop vertex functions and properties of the renormalization group function. For instance,
if one defines the conversion functions from the appropriate renormalization constants, Zk, by

Cg(a,α) =
ZMOMi

g

Zg
, Cφ (a,α) =

ZMOMi
φ

Zφ
(2.6)

where g denotes the coupling constant and φ ∈ {A,c,ψ} denote the respective fields then for each
MOM scheme MOMi

γMOMi
φ

(

aMOMi,αMOMi

)

=

[

γφ (a)+β (a)
∂
∂a

lnCφ (a,α)
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+ αγα(a,α)
∂
∂α

lnCφ (a,α)

]

MS→MOMi
(2.7)

where the mapping indicates that MS variables are mapped back to MOMi ones and a = g2/(16π2)

with g the coupling constant. The coupling constants in each scheme are related by

aMOMi =
a

(Cg(a,α))2 (2.8)

where unlabelled variables are in the MS scheme.

3. 4-point vertex

With the completion of the two loop off-shell massless 3-point vertices the natural extension
is to consider the quartic gluon vertex. Unlike the activity for the former there has been substan-
tially less activity for the 4-point function. One relevant article is [4]. There, for example, the
quartic gluon vertex was examined at the fully symmetric point at one loop but in the context of
the Weinberg scheme with the focus on that part of the vertex function relevant to the coupling
constant renormalization. This has been extended recently in [29] with the motivation to have a
quartic MOM scheme in the same class of schemes proposed in [16], as well as information on the
full vertex structure. To determine the full one loop symmetric point quartic vertex structure, the
same algorithm as that developed for the 3-point functions is used. Although similar we outline the
main differences. First, the Green’s function is

〈

Aa
µ(p)Ab

ν(q)Ac
σ (r)Ad

ρ(−p−q− r)
〉∣

∣

∣

symm
= Σabcd

µνσρ(p,q,r)
∣

∣

∣

symm
(3.1)

where symm denotes the completely symmetric quartic point. Specifically the external momenta
scalar products are p2 = q2 = r2 = − µ2 and pq = pr = qr = 1

3 µ2. Next given the extra leg on
the vertex function, and thus an additional independent momentum, there are substantially more
Lorentz tensors, P(k)µνσρ(p,q,r), in the basis into which the 4-point function is decomposed.
Specifically,

Σabcd
µνσρ(p,q,r)

∣

∣

∣

symm
=

138

∑
k=1

P(k)µνσρ(p,q,r) Σabcd
(k) (p,q,r)

∣

∣

∣

symm
. (3.2)

Unlike the 3-point vertices there is no common overall colour group tensor which can be factored
off the quartic vertex function. Instead we leave it to be determined for each scalar amplitude from
the implementation of the SU(Nc) group generator, T a, decomposition

T aT b =
1

2Nc
δ ab +

1
2

dabcT c +
i
2

f abcT c (3.3)

where f abc are the structure constants and dabc is totally symmetric. Using properties of f abc

and dabc for SU(Nc), [30], we have implemented a FORM module to handle the colour group ten-
sors in such a way that the scalar amplitudes are rewritten in terms of the colour tensor basis
{ f abe f cde, f ace f bde,dabcd

F ,dabcd
A }. The final two tensors are the rank 4 totally symmetric tensors re-

spectively in the fundamental and adjoint representations which were introduced in [31]. Although
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the results of [4] were expressed in a different colour basis we have chosen this one as it contains
the tensor structure of the original quartic gluon Feynman rule as well as having additional tensors
reflecting the symmetry of the subtraction point. Moreover, it appears to be the appropriate choice
to define the quartic momentum subtraction scheme in the class of schemes of [16]. We will denote
this scheme by MOMgggg.

To define the MOMgggg scheme we assume that the full decomposition of the vertex function
has been achieved, the underlying Feynman integrals have been evaluated and the scalar amplitudes
written in terms of the above colour basis. Then the only renormalization constant to be fixed is that
corresponding to the coupling constant. The associated wave function renormalization constants
are determined from the one loop 2-point function renormalization in the same manner as [16], in
that at the subtraction point there are no O(a) corrections. For the MOMgggg case we follow the
same ethos subject to the nature of the Green’s function. In other words we define the coupling
constant renormalization in such a way that at the symmetric subtraction point there are no O(a)

corrections in the colour channels corresponding to the quartic vertex Feynman rule. Once this has
been defined it is possible to construct the two loop renormalization group functions by the method
outlined earlier. For instance, we find, [29],

βMOMgggg(a,α) =
[

−11Nc +2Nf

] a2

3

+
[

− 2592ln4/3 α4N3
c +108384ln4/3 α3N3

c −3456ln4/3 α3N2
c Nf

− 408032ln4/3 α2N3
c +129536ln4/3 α2N2

c Nf −56160ln4/3 αN3
c

+ 17280ln4/3 αN2
c Nf +3159Φ9/16α4N3

c −29943Φ9/16α3N3
c

+ 4212Φ9/16α3N2
c Nf +83889Φ9/16α2N3

c −21672Φ9/16α2N2
c Nf

− 58305Φ9/16αN3
c +17940Φ9/16αN2

c Nf −10800Φ3/4α3N3
c

+ 52800Φ3/4α2N3
c −14400Φ3/4α2N2

c Nf −26000Φ3/4αN3
c

+ 8000Φ3/4αN2
c Nf −10080α4N3

c +94560α3N3
c −13440α3N2

c Nf

− 261280α2N3
c +67840α2N2

c Nf +176800αN3
c −54400αN2

c Nf

− 870400N3
c +332800N2

c Nf −76800Nf

] a3

76800Nc
+ O(a4)

where

ln4/3 ≡ ln

(

4
3

)

, Φ3/4 ≡ Φ1

(

3
4
,
3
4

)

, Φ9/16 ≡ Φ1

(

9
16

,
9
16

)

. (3.4)

The final two objects arise from two basic master integrals which emerge from the REDUZE

database. They derive from a triangle graph where one leg corresponds to the Mandelstam variable
s and the other is the pure scalar symmetric box given in [32]. As far as we can check we find
agreement with results of [4] aside from a few typographical errors. The complete analysis is given
in [29].

4. Discussion

We conclude with several brief remarks. First, the full two loop off-shell 3-point vertex func-
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tions of massless QCD are now available, [15]. One motivation for that analysis, aside from the
connection with Schwinger-Dyson equations, is to assist with lattice measurements and matching
onto the high energy behaviour. Although the focus here has been on linear covariant gauges it
has been extended to various nonlinear gauges, [13, 14], as these are also of interest in understand-
ing the low energy properties of Yang-Mills theories. Equally the symbolic manipulation code
can be applied to other problems such as the renormalization of operators, [13], underlying proton
structure functions again motivated by lattice considerations. Finally, the first step towards to com-
pleting the same analysis for the quartic gluon vertex has been taken here. Although a two loop
analysis even at the fully symmetric point would be a massive undertaking it appears to be viable
given the technical advances in recent years such as the Laporta algorithm.
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