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In this proceeding we consider QCD radiative corrections to the production of colourless high-
mass systems in hadron collisions. At small transverse momentum the logarithmically-enhanced
contributions can be organized to all perturbative orders by a universal resummation formula that
depends on a single process-dependent hard factor. We show that the hard factor is directly related
to the all-order virtual amplitude of the corresponding partonic process by a universal (process in-
dependent) formula, which we explicitly evaluate up to two-loop level. Once the next-to-next-to-
leading order (NNLO) scattering amplitude is available, the corresponding hard factor is directly
determined. It can be used in fully-exclusive perturbative calculations (via qT subtraction formal-
ism) up to NNLO, in resummed calculations at full next-to-next-to-leading logarithmic (NNLL)
accuracy, and also, it’s a necessary ingredient to the next subsequent logarithmic order (N3LL).
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1. Introduction

We consider the inclusive hard-scattering reaction

h1(p1)+h2(p2)→ F({qi})+X , (1.1)

where the collision of the two hadrons h1 and h2 with momenta p1 and p2 produces the observed
final state F , accompanied by an arbitrary and undetected final state X . The triggered final state F
is a generic system of one or more colourless particles, such as lepton pairs (produced by Drell–
Yan (DY) mechanism), photon pairs, vector bosons, Higgs boson(s), and so forth. The momenta
of these final state particles are denoted by q1,q2...qn. The system F has total invariant mass
M2 = (q1 + q2 + ...qn)

2, transverse momentum qT and rapidity y. We employ
√

s to denote the
centre-of-mass energy of the colliding hadrons, which are treated in the massless approximation
(s = (p1 + p2)

2 = 2p1 · p2).
It is possibile to calculate the transverse-momentum (qT ) cross section for the process in

Eq. (1.1) by using perturbative QCD. In the small-qT region (roughly, in the region where qT � M)
the convergence of the fixed-order perturbative expansion in powers of the QCD coupling αS is
spoiled by the presence of large logarithmic terms of the type lnn(M2/q2

T ). We can recover the pre-
dictivity of perturbative QCD performing the summation of these logarithmically-enhanced contri-
butions to all order in αS [1, 2, 3].

If the final state F is colourless, the large logarithmic contributions to the qT cross section can
be systematically resummed to all perturbative orders, and the structure of the resummed calcula-
tion can be arranged in a process-independent form [1, 3, 5, 6]. Starting from the resummation for-
mula for the DY process [2], two additional steps were needed to arrive at the process-independent
version of the formalism: the understanding of the all-order process-independent structure of the
Sudakov form factor (through the factorization of a single process-dependent hard factor) [5], and
the complete generalization to processes that are initiated by the gluon fusion mechanism [6].

The all-order process-independent form of the resummed calculation has a factorized structure,
whose resummation factors are (see Sect. 2) the (quark and gluon) Sudakov form factor, process-
independent collinear factors and a process-dependent hard or, more precisely (see Sect. 3), hard-
virtual factor. These factors (which are a set of perturbative functions whose perturbative resumma-
tion coefficients are computable order-by-order in αS) control the resummation of the logarithmic
contributions. The perturbative coefficients of the Sudakov form factor are known, since some time
[3, 7, 4, 8], up to the second order in αS, and the third-order coefficient A(3) (which is necessary to
explicitly perform resummation up to the next-to-next-to-leading logarithmic (NNLL) accuracy) is
also known [9]. The next-to-next-to-leading order (NNLO) QCD calculation of the qT cross section
(in the small-qT region) has been done in analytic form for two benchmark processes, namely, SM
Higgs boson production [10] and the DY process [11]. The results of Refs. [10, 11] provide us with
the complete knowledge of the process-independent collinear resummation coefficients up to the
second order in αS, and with the explicit expression of the hard coefficients for these two specific
processes. As shown in Ref. [12], the hard factor (which is process dependent) has an universal
(process-independent) structure. The universality structure of the factorization formula has a soft
(and collinear) origin, and it is closely (though indirectly) related to the universal structure of the
infrared divergences [13] of the scattering amplitude. This process-independent structure of the
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hard-virtual term, which generalizes the next-to-leading order (NLO) results of Ref. [8], is valid to
all perturbative orders [12].

The NNLO universal formula for the hard-virtual term completes the qT resummation for-
malism in explicit form up to full NNLL+NNLO accuracy. This permits direct applications to
NNLL+NNLO resummed calculations for any processes of the class in Eq. (1.1) (provided the cor-
responding NNLO amplitude is known), as already done for the cases of SM Higgs boson [14] and
DY [15, 16] production. The NNLO information of the qT resummation formalism is also relevant
in the context of fixed order calculations. Indeed, it enables to carry out fully-exclusive NNLO
calculations by applying the qT subtraction formalism of Ref. [17] (the subtraction counterterms
of the formalism follow [17] from the fixed-order expansion of the qT resummation formula, as in
Sect. 2.4 of Ref. [14]). The qT subtraction formalism has been applied to the NNLO computation of
Higgs boson [17, 18] and vector boson production [19], associated production of the Higgs boson
with a W boson [20], diphoton production [21], Zγ production [22] and ZZ production [23]. The
computations of Refs. [17, 18, 19, 20] were based on the specific calculation of the NNLO hard-
virtual coefficients of the corresponding processes [10, 11]. The computations of Refs. [21, 22, 23]
used the NNLO hard-virtual coefficients that are determined by applying the universal form of the
hard-virtual term that is derived in [12] and illustrated in the present proceeding.

Transverse-momentum resummation can equivalently be reformulated by using qT -dependent
partonic distributions (see, e.g., Refs. [9, 24]). The explicit NNLO results for the process-independent
collinear coefficients [17, 19, 10, 11] and for the structure of the hard-virtual coefficients [12] have
been confirmed by the fully-independent computation of Ref. [25], which uses the formalism of
Ref. [9].

2. Small-qT resummation

We consider the inclusive-production process in Eq. (1.1), and we introduce the corresponding
fully differential cross section1

dσF

d2qT dM2 dy dΩ
(p1, p2;qT,M,y,Ω) , (2.1)

which depends on the total momentum of the system F (i.e. on the variables qT,M,y). To evaluate
the qT dependence of the differential cross section in Eq. (2.1) within QCD perturbation theory, we
first propose the following decomposition:

dσF = dσ (sing)
F + dσ (reg)

F . (2.2)

The two last terms in the right-hand side already include the convolutions of partonic cross sections
and the scale-dependent parton distributions fa/h(x,µ2) (a = q f , q̄ f ,g is the parton label) of the
colliding hadrons. We use parton densities as defined in the MS factorization scheme, and αS(q2)

is the QCD running coupling in the MS renormalization scheme. The partonic cross sections that
enter the singular component (the first term in the right-hand side of Eq. (2.2)) contain all the
contributions that are enhanced (or ‘singular’) at small qT . These contributions are proportional

1In this section we briefly recall the formalism of transverse-momentum resummation in impact parameter space
[1, 3, 4, 5, 6]. We closely follow the notation of Ref. [6] (more details about our notation can be found therein).
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to δ (2)(qT) or to large logarithms of the type 1
q2

T
lnm(M2/q2

T ). The partonic cross sections of the
second term in the right-hand side of Eq. (2.2) are regular (i.e. free of logarithmic terms) order-
by-order in perturbation theory as qT → 0. In the following we focus on the singular component,
dσ (sing)

F , which has an universal all-order structure. The corresponding resummation formula is
written as [1, 5, 6]

dσ (sing)
F (p1, p2;qT,M,y,Ω)

d2qT dM2 dy dΩ
=

M2

s ∑
c=q,q̄,g

[
dσ (0)

cc̄,F

]∫ d2b
(2π)2 eib·qT Sc(M,b)

× ∑
a1,a2

∫ 1

x1

dz1

z1

∫ 1

x2

dz2

z2

[
HFC1C2

]
cc̄;a1a2

fa1/h1 fa2/h2 , (2.3)

where b0 = 2e−γE (γE = 0.5772 . . . is the Euler number) is a numerical coefficient, and the kine-
matical variables x1 =

M√
s e+y and x2 =

M√
s e−y. The function Sc(M,b) is the Sudakov form factor,

which is universal (process independent) [5]: it only depends on the type (c = q or c = g) of col-
liding partons, and it resums the logarithmically-enhanced contributions of the form lnM2b2 (the
region qT � M corresponds to Mb � 1 in impact parameter space). The all-order expression of
Sc(M,b) is [2]

Sc(M,b) = exp

{
−
∫ M2

b2
0/b2

dq2

q2

[
Ac(αS(q2)) ln

M2

q2 +Bc(αS(q2))

]}
, (2.4)

where Ac(αS) and Bc(αS) are perturbative series in αS. The perturbative coefficients A(1)
c ,B(1)

c ,A(2)
c

[3], B(2)
c [7, 4, 8] and A(3)

c [9] are explicitly known.
The Born level factor2

[
dσ (0)

cc̄,F

]
in Eq. (2.3) is obviously process dependent, although its

process dependence is elementary (it is simply due to the Born level scattering amplitude of the
partonic process cc̄ → F). The remaining process dependence of Eq. (2.3) is embodied in the
‘hard-collinear’ factor

[
HFC1C2

]
. This factor includes a process-independent part and a process-

dependent part. The structure of the process-dependent part is the main subject of the present
proceeding.

In the case of processes that are initiated at the Born level by the qq̄ annihilation channel
(c = q), the symbolic factor

[
HFC1C2

]
in Eq. (2.3) has the following explicit form [5][

HFC1C2
]

qq̄;a1a2
= HF

q (x1 p1,x2 p2;Ω;αS(M2)) Cqa1(z1;αS(b2
0/b2)) Cq̄a2(z2;αS(b2

0/b2)) , (2.5)

and the functions HF
q and Cqa =Cq̄ ā have the perturbative expansion

HF
q (x1 p1,x2 p2;Ω;αS) = 1+

∞

∑
n=1

(αS

π

)n
HF (n)

q (x1 p1,x2 p2;Ω) , (2.6)

Cqa(z;αS) = δqa δ (1− z)+
∞

∑
n=1

(αS

π

)n
C(n)

qa (z) . (2.7)

The function HF
q is process dependent, whereas the functions Cqa are universal (they only depend

on the parton indices). The factorized structure in the right-hand side of Eq. (2.5) is based on the

2The cross section at its corresponding lowest order in αS.
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following fact: the scale of αS is M2 in the case of HF
q , whereas the scale is b2

0/b2 in the case of Cqa.
The appearance of these two different scales is essential [5] to disentangle the process dependence
of HF

q from the process-independent Sudakov form factor (Sq) and collinear functions (Cqa). In the
case of processes that start at Born level by the gluon fusion channel (c = g), the physics of the
small-qT cross section has a richer structure, which is the consequence of collinear correlations [6]
that are produced by the evolution of the colliding hadrons into gluon partonic states (the interested
reader is referred to [6, 12]). Despite its richer structure, it is possible to disentangle [6] the process
dependence of HF

g from the process-independent Sudakov form factor (Sc) and collinear tensor
functions (Cµν

ga ) analogously to the case of the qq̄ channel.
As a consequence of the renormalization-group symmetry (Eqs.(22)–(25), in Ref. [12]), the

resummation factors HF , Sc and Cqa are not separately defined (and, thus, computable) in an unam-
biguous way. Equivalently, each of these separate factors can be precisely defined only by specify-
ing a resummation scheme [5]. We choose the hard scheme, that is defined as follows. The flavour
off-diagonal coefficients C(n)

ab (z), with a 6= b, are ‘regular’ functions of z as z→ 1. The z dependence
of the flavour diagonal coefficients C(n)

qq (z) and C(n)
gg (z) in Eqs. (2.7) is instead due to both ‘regular’

functions and ‘singular’ distributions in the limit z → 1. The ’singular’ distributions are δ (1− z)
and the customary plus-distributions of the form [(lnk(1− z))/(1− z)]+ (k = 0,1,2 . . .). The hard
scheme is the scheme in which, order-by-order in perturbation theory, the coefficients C(n)

ab (z) with
n ≥ 1 do not contain any δ (1− z) term. We highlight (see also Sect. 3) that this definition di-
rectly implies that all the process-dependent virtual corrections to the Born level subprocesses are
embodied in the resummation coefficient HF

c .
We note that the specification of the hard scheme (or any other scheme) has sole practical

purposes of presentation (theoretical results can be equivalently presented, as actually done in
Refs. [10] and [11], by explicitly parametrizing the resummation-scheme dependence of the resum-
mation factors). The qT cross section, its all-order resummation formula (2.3) and any consistent
perturbative truncation (either order-by-order in αS or in classes of logarithmic terms) of the latter
[5, 14] are completely independent of the resummation scheme.

The first-order coefficients C(1)
ab (z) are explicitly known [4, 7, 8, 26]. The second-order process-

independent collinear coefficients C(2)
ab (z) have been independently computed in Refs. [17, 19, 10,

11] and in Ref. [25] by using two completely different methods, and the results of the two compu-
tations are in agreement.

The universality structure of the process-dependent coefficients HF
c at NNLO and higher or-

ders (see Sect. 3) is one of the main results that we are discussing in the present proceeding.

3. Hard-virtual coefficients

In the hard scheme that we are using, the hard-virtual coefficient contains all the information
on the process-dependent virtual corrections, and, therefore, we can show that HF can be related
in a process-independent (universal) way to the multiloop virtual amplitude Mcc̄→F of the partonic
process cc̄ → F .

We consider the partonic elastic-production process

c(p̂1)+ c̄(p̂2)→ F({qi}) , (3.1)

5



P
o
S
(
L
L
2
0
1
4
)
0
6
2

Transverse-momentum resummation and the structure of hard factors at the NNLO Leandro Cieri

where the two colliding partons with momenta p̂1 and p̂2 are either cc̄ = gg or cc̄ = qq̄ and
F({qi}) is the triggered final-state system in Eq. (1.1). The loop scattering amplitude of the pro-
cess in Eq. (3.1) contains ultraviolet (UV) and infrared (IR) singularities, which are regularized
in d = 4−2ε space-time dimensions by using the customary scheme of conventional dimensional
regularization. The renormalized all-loop amplitude of the generic process in Eq. (3.1) is denoted
by Mcc̄→F and it has the perturbative (loop) expansion

Mcc̄→F(p̂1, p̂2;{qi})=
(
αS(µ2

R)µ2ε
R
)k
{

M
(0)

cc̄→F(p̂1, p̂2;{qi})

+

(
αS(µ2

R)

2π

)
M

(1)
cc̄→F(p̂1, p̂2;{qi}; µR)+

∞

∑
n=3

(
αS(µ2

R)

2π

)n

M
(n)

cc̄→F(p̂1, p̂2;{qi}; µR)

}
, (3.2)

where the value k of the overall power of αS depends on the specific process. The perturbative
terms M

(l)
cc̄→F (l = 1,2, . . .) are UV finite, but they still depend on ε (although this dependence

is not explicitly denoted in Eq. (3.2)) and, in particular, they are IR divergent as ε → 0. The
IR divergent contributions to the scattering amplitude have a universal structure [13], which is
explicitly known at the one-loop [27, 13], two-loop [13, 28] and three-loop [29, 30] level for the
class of processes in Eq. (3.1).

In Ref. [8] we can find the universal (process-independent) relation between the NLO hard-
virtual coefficient HF (1) and the leading-order (LO) amplitude M

(0)
cc̄→F and to the IR finite part of

the NLO amplitude M
(1)

cc̄→F . The relation between HF
c and Mcc̄→F can be extended to NNLO and

to higher-order levels [12]. This extension can be formulated and expressed in simple and general
terms by introducing an auxiliary (hard-virtual) amplitude M̃cc̄→F that is directly obtained from
Mcc̄→F in a universal (process-independent) way3. In practice, M̃cc̄→F is obtained from Mcc̄→F

by removing its IR divergences and a definite amount of IR finite terms. The (IR divergent and
finite) terms that are removed from Mcc̄→F originate from real emission contributions to the cross
section and, therefore, these terms and M̃cc̄→F specifically depend on the transverse-momentum
cross section of Eq. (2.1). The relation between HF

c and Mcc̄→F is based on an universal all-order
factorization formula [12] that emerges from the factorization properties of soft (and collinear)
parton radiation. We have explicitly determined this relation up to the NNLO [12]. More precisely,
we have shown [12] that this relation is fully determined by the structure of IR singularities of the
all-order amplitude Mcc̄→F and by renormalization-group invariance up to a single coefficient (of
soft origin) at each perturbative order.

We can relate the subtracted amplitude M̃cc̄→F to the process-dependent resummation coef-
ficients HF

c of Eqs. (2.3) and (2.5). For processes initiated by qq̄ annihilation (see Eqs. (2.5) and
(2.6)), the all-order coefficient HF

q can be written as

α2k
S (M2)HF

q (x1 p1,x2 p2;Ω;αS(M2)) =
|M̃qq̄→F(x1 p1,x2 p2;{qi})|2

|M (0)
qq̄→F(x1 p1,x2 p2;{qi})|2

, (3.3)

where k is the value of the overall power of αS in the expansion of Mcc̄→F (see Eq. (3.2)).
The expression (3.3) allows us the explicit computation of the process-dependent resummation

coefficients HF
c for an arbitrary process of the class in Eq. (1.1). The computation of HF

c up to the

3The interested reader is referred to [12], where there are all the formulae to obtain M̃cc̄→F .
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NNLO is straightforward, provided the scattering amplitude Mcc̄→F of the corresponding partonic
subprocess is available (known) up to the NNLO (two-loop) level.

Some examples (DY and Higgs boson production) are explicitly reported in Appendix A of
Ref. [12]. In particular, in Appendix A of Ref. [12], we used Eq. (3.3), and we presented the explicit
expression of the NNLO hard-virtual coefficient Hγγ(2)

q for the process of diphoton production
[21]. Recently, Eq. (3.3) was used to obtain the hard-virtual factor in the case of Higgs production
in bottom quark annihilation [31], in order to calculate the transverse momentum distribution at
NNLO+NNLL.

The same procedure that was applied to derive the universal formula for the hard-virtual coeffi-
cient HF

c can be used within the related formalism of threshold resummation [32] for the total cross
section. The process-independent formalism of threshold resummation also involves a correspond-
ing process-dependent hard factor which has a universality structure [12] that is analogous to the
case of transverse-momentum resummation. Recently, we also extended the threshold resummation
results of Ref. [12] to the next subsequent order (N3LL) [33]. The general (process-independent)
N3LL results of Ref. [33] are based on the universality structure of the hard-virtual factor, and they
exploit the recent computation of the N3LO Higgs boson cross section [34] within the soft-virtual
approximation. For the specific case of DY production we confirm [33] the soft-virtual N3LO
results of Ref. [35].

The results enumerated in this proceeding, with the knowledge of the other process-independent
resummation coefficients, complete the qT resummation formalism in explicit form up to full
NNLL and NNLO accuracy for all the processes in the class of Eq. (1.1). This allows applications
to NNLL+NNLO resummed calculations for any processes whose NNLO scattering amplitudes are
available. Moreover, we have all the ingredients to implement the qT subtraction formalism [17]
straightforwardly, to perform fully-exclusive NNLO computations for each of these processes.
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