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Color decomposition of multi-quark one-loop QCD amplitudes Christian Reuschle

1. Introduction

Due to the quite complex nature of this topic we limit ourselves to a rather basic description
of our method, trying to grant a more intuitive insight. For adetailed treatment we refer the reader
to an elaborate discussion of our method in [1].

Color decomposition offers a systematic tool to deal with the most complicated color structures
in QCD amplitudes with large numbers of particles. In the so–called color–flow decomposition [2]
the factorization of color information and kinematical information,

A = ∑
i

CiAi , (1.1)

is thereby such that the color coefficientsCi are products of open and closed color strings, given by

cclosed(g1,g2, ...,gn) = δig1 ̄g2
δig2 ̄g3

...δign ̄g1
,

copen(q,g1,g2, ...,gn, q̄) = δiq ̄g1
δig1 ̄g2

δig2 ̄g3
...δign ̄q̄

, (1.2)

where the empty closed string is given bycclosed() = N. The partial amplitudesAi are gauge invari-
ant subsets of color–stripped diagrams, which are by definition color–ordered and are built from
color–stripped Feynman rules (to be found for example in [1,3]). The color–stripped Feynman
rules are by construction antisymmetric in the exchange of the external legs, which means that also
the diagrams in the partial amplitudes are distinguished bythe cyclic orderings of the external legs
around the diagrams (usually defined in clockwise direction). One peculiarity of the color–flow
decomposition is the decomposition of the gluon field in terms of its natural matrix representation,
which leads to the decomposition of theSU(N) gluon propagator in terms of aU(N) part and a
U(1) part and is schematically depicted by

k

a b
=̂

k
×



 − 1
N



 , (1.3)

which is well known from the 1/N expansion of anSU(N) theory. The kinematical parts of the
U(N) andU(1) gluon propagators are thereby identical, whereas the colorparts are different. Since
the color coefficients in the color–flow decomposition are simple products of Kronecker deltas of
fundamental and antifundamental color indices, the contraction of the color indices, upon squaring
the amplitude, becomes trivial. The color–flow decomposition allows for a quite natural picture in
terms of all possible flows of color through an amplitude and for an efficient organization in the
number ofU(1) gluons.

Partial amplitudes are in general not cyclic ordered, whichmeans that not all diagrams in a
partial amplitude possess the same cyclic ordering of the external legs: We decompose the partial
amplitudesAi further into so–called primitive amplitudesPj through

A = ∑
i

CiAi = ∑
i

Ci ∑
j

Fi jPj . (1.4)

The primitive amplitudesPj are gauge invariant subsets of color–stripped diagrams, which are by
definition cyclic ordered and are built from color–strippedFeynman rules. At the one–loop level,
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primitive amplitudes are further characterized by the particle content in the loop (either closed
fermion loops or loops with at least one gluon or ghost particle), and by the position of the loop
with respect to the external fermion lines upon following their fermion–flow arrow (a fermion
line can either be right– or left–routing). Due to their cyclic ordering, primitive amplitudes can be
efficiently constructed by means of recursion relations, and they contain in general smaller numbers
of kinematical invariants. Many modern methods to compute the virtual contribution in a next–to–
leading order computation, such as the virtual subtractionmethod [4] or unitarity based techniques
[5], utilize cyclic ordered primitive amplitudes. To find the linear relationsFi j between theAi

and thePj (i.e. to find all cyclic orderings to a specific color flow) in the general case of QCD
amplitudes with arbitrary numbers of quarks and gluons is non–trivial: In the case of tree–level
amplitudes, the cyclic ordering is destroyed by the presence of tree–level likeU(1) gluons. In the
case of one–loop amplitudes the cyclic ordering is destroyed by the additional presence ofU(1)
gluons in the loop, or because of an additional closed string.

For the cases of tree–level amplitudes with only gluons or with one quark pair plus gluons,
the decomposition into primitive amplitudes is trivial: Inthese cases the partial amplitudes are also
primitive. Also at the one–loop level closed formulae existfor the cases of amplitudes with only
gluons or with one quark pair plus gluons [6]. For the cases ofone–loop QCD amplitudes with
arbitrary numbers of quarks and gluons approaches exist, which are based on Feynman diagrams
and the inversion of systems of linear equations [7]. However, from a certain point of view these
approaches are somewhat unsatisfactory, since one has to solve (large) systems of linear equations
and because they rely on Feynman diagrams, which is unaesthetic, as all other parts of a next–to–
leading order calculation can be performed without resorting to Feynman diagrams.

The method which we present here avoids Feynman diagrams andthe inversion of a system of
linear equations, but utilizes (generalized) shuffle relations to derive results for the decomposition
of one–loop amplitudes with an arbitary number of quarks andgluons in closed form.

At this point we would like to mention a few other quite recentefforts, which are related to
our work: Closed results for the decomposition of multi–quark one–loop amplitudes were recently
derived in [8] as well. Relations between multi–quark tree–level primitive amplitudes, based on
Dyck words, were recently derived in [9]. General symmetry properties of color structures in one–
loop amplitudes, where all fields are in the adjoint representation, were recently studied in [10].

2. Basic tree-level operations

In the following we will elaborate on some necessary basic operations. Consider therefor the
alphabetA = {li}= {q1,q2, ..., q̄1, q̄2, ...,g1,g2, ...}, made of quark, antiquark and gluon indices: A
word w = l1...lk is an ordered sequence of lettersli ∈ A. Consider further ordered sequences up
to cyclic permutations:l1l2...lk ∼ l2...lkl1. A cyclic word w = [l1...lk] is then the corresponding
equivalence class, denoted by a square bracket around a representative sequence. We define the
shuffle product between two wordsw1 = l1...lk andw2 = lk+1...lr by

w1�w2 = ∑
shufflesσ

lσ(1)...lσ(r) , (2.1)

where the sum runs over all permutations, which preserve therelative order ofl1...lk andlk+1...lr,
while permutations, where the crossing of fermion lines cannot be avoided, are excluded. Further
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we define the shuffle product between two cyclic wordsw1 = [l1...lk] andw2 = [lk+1...lr] by

w1⊚w2 = ∑
(cyclicshufflesσ)/Zr

[lσ(1)...lσ(r)] , (2.2)

where the sum runs over all permutations, which preserve therelative cyclic order ofl1...lk and
lk+1...lr, while permutations, where the crossing of fermion lines cannot be avoided, as well as
cyclic permutations oflσ(1)...lσ(r) are excluded. We then define pimitive amplitudesP(w) as linear
operators on the vector space of cyclic wordsw:

∑
w∈λ1w1+λ2w2

P(w) = λ1P(w1)+λ2P(w2) . (2.3)

Due to the antisymmetry of the color–stripped vertices theP(w) have a reflection identityP(w) =
(−1)nP(wT ), wherewT : w = [l1...ln] 7→ wT = [ln...l1], and obey partial reflection as well, e.g.
P(q1q̄1q2q̄2) =−P(q1q̄1q̄2q2).

For our purposes we need to generalize the above, in order to connect two cyclic wordsu and
v by aU(1) gluon. Consider first that we want to connect a quark linei in u = [qiui,Rq̄iui,L] with a
quark line j in v = [q jv j,Rq̄ jv j,L], as depicted in fig. 1, whereui,R andui,L (v j,R andv j,L) denote the
remaining sequences to the right and left ofqi in u (q j in v) in clockwise direction. We can then
define a generalized shuffle product by

Ui j(u,v) = ∑
(cyclicshufflesσ)/Zr
(qi...q̄i...q j ...q̄ j ...)

[lσ(1)...lσ(r)] , (2.4)

where the sum runs over all permutations, which preserve therelative cyclic order ofl1...lk and
lk+1...lr, while permutations, where the crossing of fermion lines cannot be avoided, as well as
cyclic permutations oflσ(1)...lσ(r) and permutations with cyclic order6= [qi...q̄i...q j...q̄ j...] are ex-
cluded. It can be shown that this corresponds indeed to aU(1)–like connection between the quark
lines i and j of two cyclic wordsu andv respectively [1]. The definition ofUi j(u,v) is not unique,
reflecting the fact that the decomposition of partial amplitudes into primitive amplitudes is not
unique. Now suppose thatu containsnqu quark pairs labeled byi ∈ K = {1,2, ...,nqu} and thatv
containsnqv quark pairs labeled byj ∈ L = {nqu +1,nqu +2, ...,nqu +nqv}. We then set

U(u,v) = ∑
i∈K

∑
j∈L

Ui j(u,v) . (2.5)

The definition ofU(u1, ...,ur) with more than two arguments is more involved. Suppose thatui

containsnqi quark pairs labeled fromnq1 + ...+ nqi−1 + 1 to nq1 + ...+ nqi−1 + nqi . The operation
U(u1, ...,ur) is then defined by the following algorithm:

1. Draw all connected tree diagrams withr vertices, labeled byu1, ...,ur.

2. For every edge connectinguk andul use an operationUi j, wherei labels a quark pair inuk

and j labels a quark pair inul , and sum overi and j. The order in which these operations are
performed is irrelevant, since the operations for a given graph are associative.

3. Sum over all diagrams.
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q i

q̄ i

u i,R

︷

︸︸

︷

︸

︷︷

︸

u i,L

U(1)

q̄ j

q j

v j,L

︷

︸︸

︷

︸

︷︷

︸

v j,R

Figure 1: U(1)–like connection between the quark linesi and j of two cyclic wordsu andv, respectively, whereui,R,
ui,L, v j,R andv j,L may contain further quark and antiquark indices, as well as gluon indices.

The reason for this definition is that a naive iteration of theoperation with two factors in eq. (2.5)
is not associative and the corresponding result would not only reduce to diagrams that connect all
quark lines in all possible ways by twoU(1) gluons, but also take unwanted diagrams into account.

Another possibility to define the operationUi j(u,v) is the following: Imagine an ordered am-
plitude, corresponding to a cyclic wordu = [qiui,Rq̄iui,L] as depicted by the left diagram in fig. 1,
with two setsui,R andui,L of color–connected particles, separated by a parton linei. Suppose we
want to have both sets on one side of the parton linei, such that the members of one set never
directly couple to the members of the other set: Using shufflerelations and the antisymmetry of
the color–stripped vertices we can “flip” the elements ofui,L to the other side of the parton linei,
such that diagrams, where the elements ofui,R andui,L would couple, cancel each other. In terms
of primitive amplitudes, this is known as Kleiss–Kuijf relations:

P(0)
n (u) = (−1)nui,L ∑

w∈[qi(ui,R�uT
i,L)q̄i]

P(0)
n (w) , (2.6)

wherenui,L denotes the size anduT
i,L the reverse of the sequenceui,L. Imagine now the full scenario

depicted in fig. 1: In a similar fashion to above we can “flip” the elements ofui,L andv j,L to the
other sides of the quark linesi and j, respectively. Connecting then the quark linesi and j is indeed
U(1)–like, and we may thus define the operationUi j(u,v) equally well by

Ui j(u,v) = (−1)nui,L+nv j,L ∑
w∈[qi(ui,R�uT

i,L)q̄iq j(v j,R�vT
j,L)q̄ j ]

w . (2.7)

3. Tree-level multi-quark amplitudes

We concentrate on the case of amplitudesˆA with distinct quark pairs, since the case of ampli-
tudes with identical quark pairs can always be related to theformer by antisymmetrization [1, 3].
The color decomposition of a tree–level amplitude withng gluons andnq distinct quark pairs reads

ˆA
(0)

n =

(
gs√

2

)n−2

∑
π∈Snq

∑
i1,...,inq≥0

i1+...+inq=ng

∑
σ∈Sng

copen
(
q1,gσ1, ...,gσi1

, q̄π1

)
copen

(
q2,gσi1+1, ...,gσi1+i2

, q̄π2

)

...copen
(
qnq ,gσi1+...+inq−1+1, ...,gσi1+...+inq

, q̄πnq

)
A(0)

n
(
q1,gσ1, ...,gσi1

, q̄π1,q2, ...,gσi1+...+inq
, q̄πnq

)
, (3.1)

which generates all possible distinct color–flow combinations by summing over all permutations
π of nq antiquark indices, all partitions{i1, ..., inq} of ng gluon indices amongnq open strings, and
all permutationsσ of ng gluon indices. Without loss of generality we can relabel thequarks and
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antiquarks such that the permutationπ of antiquark indices can be written in terms ofr cycles with
sizesk j ( j = 1, ...,r):

π = (1,2, ...,k1)(k1+1, ...,k1+ k2) . . . (k1+ ...+ kr−1+1, ...,k1+ ...+ kr) , (3.2)

wherek1+ ...+ kr = nq. Each cyclej in π corresponds directly to a product of open strings and
defines a cyclic word

u j =
[

qk1+...+k j−1+1...q̄k1+...+k j−1+2qk1+...+k j−1+2...q̄k1+...+k j−1+3 . . .qk1+...+k j−1+k j ...q̄k1+...+k j−1+1

]

, (3.3)

where every cyclic word simply contains an ordered sequenceof quark, antiquark and gluon in-
dices, corresponding to the members of a color–connected cluster. Each partial amplitude can thus
be associated to a set{u1, ...,ur} of r cyclic words, corresponding to the associated permutationπ
of antiquark indices. Two cyclic words are thereby connected by aU(1) gluon, and each partial am-
plitude contains therefore(r−1) U(1) gluons. We can then use the shuffle operationU(u1, ...,ur),
defined in the previous section, to determine all cyclic orderings to this partial amplitude, such that
its decomposition into primitive amplitudes reads

A(0)
n =

(

− 1
N

)r−1

∑
w∈U(u1,...,ur)

P(0)
n (w) . (3.4)

4. Basic one-loop operations

In one–loop amplitudes we encounter color flows of double–ring structure, with emissions
from an inner and an outer ring. Consider these structures tocorrespond to two cyclic words
u = [l1...lk] andv = [lk+1...lr], where emission from the outer ring is in clockwise order ofu, while
emission from the inner ring is in anti–clockwise order ofv, as for example depicted in the left
diagram of fig. 2 withu = [gc...gn] andv = [g1...gc−1]. If we want to find all cyclic orderings cor-
responding to the color flow of the associated contribution,we may use the cyclic shuffle product:

(−1)r−ku⊚ vT . (4.1)

Further we can have exchange ofU(1) gluons between tree–like quark lines and loop struc-
tures, where we distinguish two cases:

(i) A quark line color–connected to the loop, in which case there is a cyclic wordu[l]j , with l =
1/2,1, color–connected to the loop (regarding the label[l], see sec. 5). In this case the tree–
level operationU on the cyclic words{ui6= j} andu[l]j suffices:U(u1, ...,u j−1,u

[l]
j ,u j+1, ...,ur).

(ii) A closed fermion loop, in which case there is a cyclic word v[1/2], corresponding to a separate
color cluster. In this case the tree–level operationU on the cyclic words{ui} and v[1/2]

suffices:U (u1, ...,ur,v).

Finally we can haveU(1) gluons in the loop, where we distinguish three cases:

(i) A U(1) gluon closing on the same quark line: Consideru = [qiui,Rq̄iui,L], as depicted by
the left cyclic word in fig. 1. The loop shall be closed by aU(1)–like connection, which is
implemented by the operation

Cii(u) = (−1)nui,L ∑
w∈[qi(ui,R�uT

i,L)q̄i]

w , (4.2)

6
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1

2

3

(c−1)

cn

(c+2) (c+1)

3

4

5

(c+1)

(c+2)2

1 n

Figure 2: The two diagrams on the left depict examples for color–flow diagrams corresponding to
cclosed

(
g1, ...,gc−1

)
cclosed

(
gc, ...,gn

)
and cclosed

(
g3, ...,gc+1

)
copen

(
q2,gc+2, ...,gn, q̄1

)
, respectively. The diagram in

the middle corresponds thereby for example to a contribution with one quark pair, where the associated continuous
fermion line is indicated in red. The diagram on the very right promotes two quark linesi and j in the cyclic word
u = [qiu1q̄iu2q ju3q̄ ju4], where the sequencesu1 throughu4 may contain further quark and antiquark indices, as well as
gluon indices. The bold lines in red correspond to the continuous fermion lines of the two quark pairs.

where we essentially “flip” the elements ofui,L to the other side of the quark linei. Closing
the loop on the “lower” side is thenU(1)–like. The definition ofCi j(u) is not unique.

(ii) A U(1) gluon closing between two quark lines of the same cyclic wordu=[qiu1q̄iu2qju3q̄ju4],
as depicted on the very right of fig. 2. The loop shall be closedby aU(1)–like connection
between the quark linesi and j, which is implemented by the operation

CRR
i j (u) = (−1)nu4 ∑

w∈[qR
i ((u1q̄R

i u2qR
j u3)�uT

4 )q̄
R
j ]

w , (4.3)

where we essentially “flip” the elements ofu4 to the other side of theqi–q j line. Closing
the loop on the “lower” side between the quark linesi and j is thenU(1)–like. There are
in total four categories of this type, corresponding to the different “routing” combinations of
the fermion–flow arrows ofi and j with respect to the loop, which we need to sum in the
end:Ci j(u) =CRR

i j (u)+CRL
i j (u)+CLR

i j (u)+CLL
i j (u). Again, their definition is not unique.

(iii) Multiple U(1) gluons closing between quark lines of different cyclic words: Cutting one
U(1) gluon gives a tree and we expect that the remainingU(1) gluons can be treated with
the operationUi j. We define an operationCU(u1, ...,ur), acting onr cyclic words, which
combines the operationUi j andCi j by the following algorithm:

1. Draw all connected one–loop diagrams withr vertices, labeled byu1, ...,ur, including
diagrams with self–loops. Select in each diagram one edgeeC, such that upon removal
of this edge the diagram becomes a connected tree diagram.

2. For every edgee 6= eC connectinguk andul use an operationUi j, wherei labels a quark
pair in uk and j labels a quark pair inul and sum overi and j. The order in which
these operations are performed is irrelevant, since the operations for a given graph are
associative.

3. If eC is not a self–loop and connectsuk andul use an operationCi j, wherei labels a
quark pair inuk and j labels a quark pair inul and sum overi and j.

4. If eC is a self–loop connected touk use an operationCi j, wherei and j label quark pairs
in uk and sum overi and j subject toi ≤ j.

5. Divide by the symmetry factor of the diagram. Sum over all diagrams.
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5. One-loop multi-quark amplitudes

The color decomposition of a one–loop amplitude withng gluons andnq distinct quark pairs
reads

ˆA
(1)

n =

(
gs√

2

)n

∑
π∈Snq

∑
i1,...,inq ,m≥0

i1+...+inq+m=ng

∑
σ∈Sng/Zm

copen
(
q1,gσ1, ...,gσi1

, q̄π1

)
copen

(
q2,gσi1+1, ...,gσi1+i2

, q̄π2

)

. . . copen
(
qnq ,gσi1+...+inq−1+1, ...,gσi1+...+inq

, q̄πnq

)
cclosed

(
gσi1+...+inq+1, ...,gσng

)

A(1)
n,m

(
q1,gσ1, ...,gσi1

, q̄π1,q2, ...,gσi1+...+inq
, q̄πnq

;gσng−m+1, ...,gσng

)
, (5.1)

which generates all possible distinct color–flow combinations by summing over all permutationsπ
of nq antiquark indices, all partitions{i1, ..., inq ,m} of ng gluon indices amongnq open strings and
one closed string, and all permutationsσ of ng gluon indices, except those that leave the closed
string invariant. Again, the permutationπ of antiquark indices can be written in terms ofr cycles,
as given in eq. (3.2), where each cycle defines a cyclic word, as given in eq. (3.3). The additional
closed string defines an additional cyclic wordv, which containsm gluon indices:

cclosed
(
gσng−m+1, ...,gσng

)
⇒ v =

[
gσng−m+1...gσng

]
. (5.2)

One–loop partial and primitive amplitudes, as already mentioned, are further characterized by
two additional properties:1st) Additional routing labelsL or R distinguish whether fermion lines
(following their fermion–flow arrows) turn left or right with respect to the loop. The reflection
identity states then thatP(1)(w) = (−1)nP(1)(wT ), while {L ↔ R}. In the following we will not
concentrate any further on the assignment of routing labels. 2nd) For each partial amplitude we
separate contributions with a closed fermion loop, which welabel by [1/2], from those without,
which we label by[1]: A(1) = A(1)[1/2]+A(1)[1]. Primitive amplitudes are to be labeled accordingly.

The decomposition of the partial amplitudesA(1)[1/2] into primitive amplitudes reads

A(1)[1/2]
n,m =

δm,0

N
N f

(

− 1
N

)r−1 r

∑
j=1

∑
w∈U

(
u1,...,u j−1,u

[1/2]
j ,u j+1,...,ur

)
P(1)[1/2]

n (w)

+ N f

(

− 1
N

)r

∑
w∈U(u1,...,ur ,v)

P(1)[1/2]
n (w) , (5.3)

where in general we may haveN f flavors running in the loop andcclosed(...) may be empty. Ifπ
consists ofr cycles, we can have either(r− 1) or r tree–likeU(1) gluons in the amplitude. The
first term in eq. (5.3) corresponds to contributions where one of the color clusters, which we denote
by u[1/2]

j , is color–connected to the closed fermion loop, i.e. it contributes to the casem = 0. We
need, however, an explicit factor1

N to compensate for the factorcclosed() = N, which is not present
in these contributions. There are(r−1) tree–likeU(1) gluons, which connect between{ui6= j} and

u[1/2]
j . Since each of the color clusters can be the one color–connected to the closed fermion loop,

we need to sum overj. The second term in eq. (5.3) corresponds to contributions where none of
the external quark lines is color–connected to the closed fermion loop. The closed fermion loop
corresponds to a closed string with gluons attached and thusbelongs to a separate color cluster,

8
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Figure 3: Examples of color–flow diagrams for the three cases discussed in eq. (5.4). The first diagram shows an
example with a closed string on the inner ring (case 1). The second diagram shows an example without a closed string.
Here, particles attached to the outer ring are colour–disconnected from particles attached to the inner ring (case 2). The
third diagram shows also an example without a closed string but with aU(1) gluon in the loop. Here, particles attached
to the outer ring are colour–connected to particles attached to the inner ring (case 3). The bold lines in red indicate the
continuous fermion lines of quark pairs, the double lines correspond toU(N) gluons, the dashed lines toU(1) gluons.

associated to the cyclic wordv, i.e. it contributes to the casem ≥ 0. We need no explicit factor1N
here, since any factorcclosed() = N generated form = 0, is genuine to these contributions. There
arer tree–likeU(1) gluons, which connect between{ui} andv. In everyP(1)[1/2]

n (w) an additional
minus sign needs to be included, due to the closed fermion loop.

The decomposition of the partial amplitudesA(1)[1] into primitive amplitudes reads

A(1)[1]
n,m = (−1)m

(

− 1
N

)r−1 r

∑
j=1

∑
w∈U

(

u1,...,u j−1,u
[1]
j ,u j+1,...,ur

)

⊚vT

P(1)[1]
n (w)

+
δm,0

N

(

− 1
N

)r−2 r−1

∑
i=1

r

∑
j=i+1

(−1)nu j ∑
w∈U

(
u1,...,ui�,...,u j�,...,ur ,

(
ui⊚uT

j

)[1] )
P(1)[1]

n (w)

+
δm,0

N

(

− 1
N

)r

∑
w∈CU(u1,...,ur)

P(1)[1]
n (w) (5.4)

where we have to deal with double–ring structures now, and whereuk� denotes that the cyclic word
uk is to be taken off the list of arguments ofU(...). If π consists ofr cycles, we can have either
(r − 1), (r − 2) or r U(1) gluons in the amplitude. The first term in eq. (5.4) corresponds to
contributions where we have a closed string with≥ 0 gluons attached, i.e. it contributes to the case
m ≥ 0 (we define the closed string to be on the inner ring). One of the cyclic wordsu corresponds
to the loop, which we denote byu[1]j , while the others correspond to tree–like structures. There are
(r−1) tree–likeU(1) gluons, which connect between ther cycles. Since each of the color clusters
can be the one color–connected to the loop, we need to sum overj. The second term in eq. (5.4)
corresponds to contributions where we have no closed string, i.e. it contributes to the casem = 0.
Two of the cyclic wordsu correspond now to the loop, where one is associated to the inner ring
and the other to the outer ring, and where particles on the inner ring are color–disconnected from
particles on the outer ring. There are(r−2) tree–likeU(1) gluons, which connect between{uk 6=i, j}
and

(
ui⊚uT

j

)[1]
, and we need to sum overi and j < i. The third term in eq. (5.4) corresponds also

to contributions where we have no closed string, i.e. it contributes also to the casem = 0. There
arer U(1) gluons, of which at least one is in the loop, and particles on the inner ring are color–
connected to particles on the outer ring. Here we use the operationCU(u1, ...,ur), defined in the
previous section. Examples of color–flow diagrams in all three cases are shown in fig. 3.
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6. Summary

The color–flow decomposition yields a systematic approach to complicated color structures.
The reduction to primitive amplitudes, particularly in thecase of one–loop amplitudes with arbitary
numbers of gluons and quarks, is thereby a non–trivial problem. Closed expressions can neverthe-
less be formulated through (generalized) shuffle relations. We have validated the formulae that
result thereby from our method to converge to the known results in [6], for the case of one–loop
amplitudes with one quark pair and an arbitrary number of gluons, and further compared to the
results of Ita et al. in [7], e.g. for the case of one–loop amplitudes with two quark pairs plus two
gluons. The corresponding checks and examples, as well as further comments as to the assignment
of routing labels or the loop closing operation in eq. (4.3) etc., can be found in [1]. We want to
stress that shuffle operations yield in general a decomposition into primitive amplitudes with a high
degree of symmetry, but not necessarily with a minimum number of terms. However, by using iden-
tities between primitive amplitudes, e.g. the reflection identity, one can always reduce the number
of terms. Finally we want to note that the method, which we present here, offers the possibility
to study subleading effects in the 1/N expansion of one–loop QCD amplitudes with an arbitrary
number of quarks and gluons in a systematic way. Moreover we would like to suggest that shuffle
operations might also be of help in order to study the color structure of two–loop amplitudes.
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