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1. Introduction

The recent discovery of the Higgs boson at the LHC represents a great success of the Standard

Model (SM) of elementary particles. At the same time, the absence so far of a clear signal of

physics beyond the SM during the first run of the LHC leaves a certain degree of dissatisfaction.

Because of that, the high quality of data that the LHC will provide in the next run increases even

more the relevance of high-precision theoretical predictions for the analysis of known phenomena

and for finding innovative strategies to achieve new discoveries.

The loop-tree duality method [1, 2, 3, 4] establishes that generic loop quantities (loop integrals

and scattering amplitudes) in any relativistic, local and unitary field theory can be written as a sum

of tree-level objects obtained after making all possible cuts to the internal lines of the correspond-

ing Feynman diagrams, with one single cut per loop and integrated over a measure that closely

resembles the phase-space of the corresponding real corrections. This duality relation is realized

by a modification of the customary +i0 prescription of the Feynman propagators. At one-loop,

the new prescription compensates for the absence of multiple-cut contributions that appear in the

Feynman Tree Theorem [5]. The modified phase-space raises the intriguing possibility that vir-

tual and real corrections can be brought together under a common integral and treated with Monte

Carlo techniques at the same time. In this talk, we review the actual state of development of the

loop-tree duality method and focus our discussion on analysing the singular behaviour of the loop

integrand of the dual representation of one-loop integrals and scattering amplitudes, as a necessary

step towards a numerical implementation for the calculation of physical cross-sections.

2. The loop-tree duality relation at one-loop

The loop-tree duality relation is obtained by directly applying the Cauchy residue theorem to

a general one-loop N-leg scalar integral

L(1)(p1, . . . , pN) =
∫

ℓ
∏
i∈α1

GF(qi) ,
∫

ℓ
•=−i

∫
ddℓ

(2π)d
• , (2.1)

where

GF(qi) =
1

q2
i −m2

i + i0
(2.2)

are Feynman propagators that depend on the loop momentum ℓ, which flows anti-clockwise, and

the four-momenta of the external legs pi, i ∈ α1 = {1,2, . . .N}, which are taken as outgoing and

are ordered clockwise (this kinematical configuration is shown in Fig. 1(left)). We use dimensional

regularization with d the number of space-time dimensions. The momenta of the internal lines

qi,µ = (qi,0,qi), where qi,0 is the energy (time component) and qi are the spacial components, are

defined as qi = ℓ+ ki with ki = p1 + . . .+ pi, and kN = 0 by momentum conservation. We also

define k ji = q j −qi.

The dual representation of the scalar one-loop integral in Eq. (2.1) is thus the sum of N dual

integrals [1, 2]:

L(1)(p1, . . . , pN) = − ∑
i∈α1

∫

ℓ
δ̃ (qi) ∏

j∈α1, j 6=i

GD(qi;q j) , (2.3)
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Figure 1: Momentum configuration of the one-loop (left) and two-loop (right) N-point scalar integrals.

where

GD(qi;q j) =
1

q2
j −m2

j − i0η k ji

(2.4)

are the so-called dual propagators, as defined in Ref. [1], with η a future-like vector, η2 ≥ 0,

with positive definite energy η0 > 0. The delta function δ̃ (qi) ≡ 2π iθ(qi,0)δ (q2
i −m2

i ) sets the

internal lines on-shell by selecting the pole of the propagators with positive energy qi,0 and negative

imaginary part. The presence of the vector η is a consequence of using the residue theorem and

the fact that the residues at each of the poles are not Lorentz-invariant quantities. The Lorentz-

invariance of the loop integral is recovered after summing over all the residues.

3. Loop-tree duality relation at two-loops and beyond

The extension of the Duality theorem to two-loops and beyond has been discussed in detail in

Ref. [2]. It is convenient to define the following functions combining different Feynman and dual

propagators:

GF(αk) = ∏
i∈αk

GF(qi) , GD(αk) = ∑
i∈αk

δ̃ (qi) ∏
j∈αk

j 6=i

GD(qi;q j) , (3.1)

where αk is used to denote any set of internal momenta that depend on the same loop momentum

or the sum of several independent loop momenta. At two loops we need three loop lines αk to

label all the internal momenta: α1, α2 and α3 for those momenta that depend on ℓ1, ℓ2 and ℓ1 + ℓ2,

respectively (see Fig. 1(right)). By definition GD(αk) = δ̃ (qi), when αk = {i} consists of a single

four-momentum. We also define:

GD(−αk) = ∑
i∈αk

δ̃ (−qi) ∏
j∈αk

j 6=i

GD(−qi;−q j) , (3.2)

where the sign in front of αk indicates that we have reversed the momentum flow of all the internal

lines in αk.
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The key ingredient necessary to extend the loop-tree duality theorem to higher orders is the

following relationship relating the dual and Feynman functions of two subsets:

GD(α1 ∪α2) = GD(α1)GD(α2)+GD(α1)GF(α2)+GF(α1)GD(α2) , (3.3)

which can be generalized as well to the union of an arbitrary number of loop lines [2]. The applica-

tion of the loop-tree duality theorem at higher orders proceeds in a recursive way. For the two-loop

case, one starts by selecting one of the loops

L(2)(p1, p2, . . . , pN) =
∫

ℓ1

∫

ℓ2

GF(α1 ∪α2 ∪α3)

= −

∫

ℓ1

∫

ℓ2

GF(α2)GD(α1 ∪α3) . (3.4)

As the loop-tree duality theorem applies to Feynman propagators only, we use Eq. (3.3) to re-

express the dual propagators entering the second loop as Feynman propagators. The application

of the loop-tree duality theorem to the second loop with momentum ℓ2 also requires to reverse

the momentum flow in some of the loop lines. The final dual representation of a two-loop scalar

integral reads:

L(2)(p1, p2, . . . , pN) =
∫

ℓ1

∫

ℓ2

{−GD(α1)GF(α2)GD(α3) (3.5)

+ GD(α1)GD(α2 ∪α3)+GD(α3)GD(−α1 ∪α2)} ,

which is given by double cut contributions opening the loop diagram to a tree-level object.

4. The loop-tree duality relation for multiple poles

The appearance of identical propagators or powers of propagators can be avoided at one-loop

by a convenient choice of the gauge [1], but not at higher orders. Identical propagators possess

higher than single poles and the loop-tree duality theorem discussed so far, which is based on

assuming single poles, must be extended to accommodate for this new feature. Two different

strategies have been proposed in Ref. [3] to deal with this problem. The first one consists of

extending the loop-tree duality theorem by using the Cauchy residue theorem for higher order

poles. The second one consists of using Integration by Parts (IBP) [10, 11] to reduce integrals

with multiple poles to integrals with single poles where the original loop-tree duality theorem

can be applied directly. It is important to stress that in that case it is not necessary to perform a

full reduction to a particular integral basis. Explicit examples at two- and three-loops have been

presented in Ref. [3].

5. Cancellation of singularities among dual integrands

Analysing the singular behaviour of the loop integrand in the loop momentum space is an

attractive approach because it allows a rather direct physical interpretation of the singularities of the

loop quantities [6]. This is particularly true for the case of the loop-tree duality method. The loop

integrand becomes singular in regions of the loop momentum space in which subsets of internal
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Figure 2: Light-cone hyperboloids for three arbitrary propagators in Cartesian coordinates in the (ℓ0,ℓz)

space (left). Kinematical configuration with infrared singularities (right).

lines go on-shell. In Cartesian coordinates, the Feynman propagator in Eq. (2.2) becomes singular

at hyperboloids with origin in −ki, where the minimal distance between each hyperboloid and its

origin is determined by the internal mass mi. This is illustrated in Fig. 2, where for simplicity we

work in d = 2 space-time dimensions. Figure 2 (left) shows a typical kinematical situation where

two momenta, k1 and k2, are separated by a time-like distance, k2
21 > 0, and a third momentum,

k3, is space-like separated with respect to the other two, k2
31 < 0 and k2

32 < 0. The forward light-

cone hyperboloids (qi,0 > 0) are represented in Fig. 2 by solid lines, and the backward light-cone

hyperboloids (qi,0 < 0) by dashed lines. The loop-tree duality method is equivalent to performing

the loop integration along the forward light-cone hyperboloids. In the following, we take ηµ =

(1,0), and thus −i0η k ji =−i0k ji,0.

Two or more Feynman propagators become simultaneously singular where their respective

light-cone hyperboloids intersect. In most cases, these singularities, due to normal or anomalous

thresholds [8, 9] of intermediate states, are integrable by contour deformation [7]. However, if two

massless propagators are separated by a light-like distance, k2
ji = 0, then the overlap is tangential, as

illustrated in Fig. 2 (right), and leads to non-integrable collinear singularities. In addition, massless

propagators can generate soft singularities at qi = 0. In the dual representation of the integrand

at least one propagator is already set on-shell, and we should analyse the singularities of the dual

propagators. A crucial point of our discussion is the observation that dual propagators can be

rewritten as

δ̃ (qi) GD(qi;q j) = i2π
δ (qi,0 −q

(+)
i,0 )

2q
(+)
i,0

1

(q
(+)
i,0 + k ji,0)2 − (q

(+)
j,0 )

2
, (5.1)

where

q
(+)
i,0 =

√
q2

i +m2
i − i0 (5.2)

is the loop energy measured along the light-cone hyperboloid with origin at −ki. By defini-

tion we have Re(q
(+)
i,0 ) ≥ 0. The factor 1/q

(+)
i,0 can become singular for mi = 0, but the integral

∫
ℓ δ (qi,0 −q

(+)
i,0 )/q

(+)
i,0 is still convergent by two powers in the infrared. For soft singularities to be

5
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generated two dual propagators, each one contributing with one power in the infrared, are required.

From Eq. (5.1) it is obvious that dual propagators become singular, G−1
D (qi;q j) = 0, if one of the

following conditions is fulfilled:

q
(+)
i,0 +q

(+)
j,0 + k ji,0 = 0 , (5.3)

q
(+)
i,0 −q

(+)
j,0 + k ji,0 = 0 . (5.4)

The first condition, Eq. (5.3), is satisfied if the forward light-cone hyperboloid of −ki intersects

with the backward light-cone hyperboloid of −k j:

k2
ji − (m j +mi)

2 ≥ 0 , k ji,0 < 0 , forward with backward light− cones . (5.5)

The second condition, Eq. (5.4), is true when the two forward light-cone hyperboloids intersect

each other:

k2
ji − (m j −mi)

2 ≤ 0 , two forward light− cones . (5.6)

One of the main properties and advantages of the loop-tree duality method is that a partial can-

cellation of singularities occurs among different dual integrands [4]. For a qualitative discussion,

let’s go back to Fig. 2 (left) where two of the Feynman propagators are separated by a space-like

distance, k2
31 < 0 (or more generally fulfilling Eq. (5.6)). In the corresponding dual representa-

tion one of these propagators is set on-shell while the other becomes dual, and the integration

occurs along the respective forward light-cone hyperboloids. There, the two forward light-cone

hyperboloids of −k1 and −k3 intersect at a single point. The integration over ℓz along the forward

light-cone hyperboloid of −k1 occurs outside the forward light-cone hyperboloid of −k3 below the

singular intersection point, and inside that light-cone above this point. The opposite occurs if we set

q3 on-shell; integration over ℓz happens from inside to outside the forward light-cone hyperboloid

of −k1. This leads to a change of sign and to the cancellation of the common singularity between

the two dual contributions. Similarly, three and four space-like separated propagators do not lead

to any common singularity. For a detailed analytic demonstration see Ref. [4]. If instead, the sepa-

ration is time-like (in the sense of Eq. (5.5)), as is the case of k2 with respect to k1 in Fig. 2 (left),

the common singularities are met only by one of the two forward light-cone hyperboloids, and then

only one of the two dual integrands becomes singular.

A similar qualitative analysis is extensible to collinear singularities, occurring when two mass-

less propagators are separated by a light-like distance, e.g. k2
31 = 0 in Fig. 2 (right). In that case, the

corresponding light-cone hyperboloids overlap tangentially along an infinite interval. The collinear

singularity for ℓ0 > −k3,0, however, appears at the intersection of the two forward light-cone hy-

perboloids, with the forward light-cone hyperboloid of −k3 located inside the forward light-cone

hyperboloid of −k1, equivalently with the forward light-cone hyperboloid of −k1 located out-

side the forward light-cone hyperboloid of −k3, and then the singularities cancel each other. For

−k1,0 < ℓ0 <−k3,0, instead, it is the forward light-cone hyperboloid of −k1 that intersects tangen-

tially with the backward light-cone hyperboloid of −k3 according to Eq. (5.3). The collinear diver-

gences survive in this energy strip, which indeed also limits the range of the loop three-momentum.

The soft singularity of the integrand at q
(+)
i,0 = 0 leads to soft divergences only if two other propa-

gators, each one contributing with one power in the infrared, are light-like separated from −ki. In

Fig. 2 (right) this condition is fulfilled at q
(+)
1,0 = 0 only.
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δ̃ (qi)

q̃i−1

pi

p′
r

p′
i

p̃ir
′

Figure 3: Factorization of the dual one-loop and tree-level squared amplitudes in the collinear limit. The

dashed line represents the momentum conservation cut.

6. Cancellation of infrared singularities with real corrections

In the previous section we have seen that both threshold and infrared singularities are con-

strained in the dual representation of the loop integrand to a finite region of the loop three-momentum.

Singularities outside this region, occurring in the intersection of forward light-cone hyperboloids,

cancel in the sum of all the dual contributions. The size of this region is of the order of the external

momenta, and can be mapped to the finite-size phase-space of the real corrections. To discuss the

cancellation of infrared singularities with the real corrections we make use of collinear factorization

and the splitting matrices, which encode the collinear singular behaviour of scattering amplitudes,

as introduced in Ref. [12]. We consider the one-loop scattering amplitude M
(1)
N with the internal

momenta qi on-shell and the limit where pi and qi become collinear

|M
(0)
N (p1, . . . , pN)〉 → |M

(0)
N+2(. . . , pi,−qi,qi, pi+1, . . .)〉 (6.1)

= Sp(0)(pi,−qi;−q̃i−1) |M
(0)
N+1(. . . , pi−1,−q̃i−1,qi, pi+1, . . .)〉+O(q2

i−1) ,

where the reduced matrix element M
(0)
N+1 is obtained by replacing the two collinear partons of

M
(0)
N+2 by a single parent parton with light-like momentum q̃

µ
i−1 = q

µ
i−1 −

q2
i−1 nµ

2nqi−1
, with n2 = 0. Its

interference with the corresponding N-parton tree-level scattering amplitude M
(0)
N , is integrated

with the appropriate phase-space factor

∫
dΦN−1(p1; p2, . . . , pN) =

(
N

∏
i=2

∫

pi

δ̃ (pi)

)
δ (d)(

N

∑
i=1

pi)θ(pi,0 −q
(+)
i,0 ) , (6.2)

where we assume that only the external momentum p1 is incoming (p1,0 < 0). Notice that the loop

energy in Eq. (6.2) is restricted by the energy of the external particle pi because we have selected

the infrared divergent region. This restriction allows for the mapping with real corrections, as

illustrated in Eq. (3).

Similarly, we consider the N + 1 tree-level scattering amplitude where the parton i radiates

an extra parton r. Besides the initial state momentum p1, we denote the external momenta of the

real corrections as primed momenta because they are subject to the momentum conservation delta

function. In the limit where p′
i and p′

r become collinear, M
(0)
N+1 factorizes as

〈M
(0)
N+1(p1, . . . , p′N+1)|= 〈M

(0)
N (. . . , p′i−1, p̃′ir, p′i+1, . . .)|Sp(0)†(p′i, p′r; p̃′ir)+O(s′ir) , (6.3)

7
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where p′ir = p′i + p′r, s′ir = p′2ir , and p̃
′µ
ir = p

′µ
ir −

s′ir nµ

2np′ir
. As Fig. 3 suggests the mapping between the

four-momenta of the virtual and real matrix elements should be such that pi = p̃′ir, p j = p′j( j 6= i),

−q̃i−1 = p′i and qi = p′r, in the collinear limit. For more details see Ref. [4].

7. Conclusions and outlook

The loop-tree duality method presents quite attractive features for the calculation of multipar-

tonic cross-sections at higher orders. Integrand singularities occurring in the intersection of forward

light-cones, or equivalently from space-like separated propagators, cancel among dual integrals.

The remaining singularities, excluding UV divergences, are found in the intersection of forward

with backward light-cones and are produced by dual propagators that are time-like separated (or

causally connected) and less energetic than the internal propagator that is set on-shell. Therefore,

these singularities are restricted to a finite region of the loop three-momentum space, which is of

the size of the external momenta. As a result, a local mapping at the integrand level is possible

between one-loop and tree-level matrix elements to cancel soft and collinear divergences. One can

anticipate that a similar analysis at higher orders of the loop-tree duality relation is expected to

provide equally interesting results.
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