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fermion/sfermion two-loop contributions. The fermion/sfermion contributions are logarithmi-

cally enhanced for large sfermion masses and can yield the largest corrections compared to all
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Figure 1: Four categories of EW two-loop diagrams: Higgs-dependent bosonic (a) and fermionic (b)
diagram classes. Diagrams withγγZ-fermion loop (c) and withZ-γ mixing (d).

1. Introduction

The muon anomalous magnetic moment,aµ = (g− 2)µ , is one of the most precise physical
measurements and is also a case, where the Standard Model (SM) prediction does not agree with
experimental results. The deviation between the latest experiment at Brookhaven National Labora-
tory [1] and the Standard Model prediction [2] amounts to 3...4σ , and this long-standing deviation
motivates new physics.

It is an ongoing attempt to improve the accuracy of the SM theory prediction. From the new
physics side the Minimal Supersymmetric Standard Model (MSSM) is one of the most persua-
sive scenarios to solve this discrepancy. Because of its high precision,(g−2)µ is a good tool to
constrain parameters of various models.

The new(g−2)µ experiments [3, 4] are expected to produce results on schedule with much
higher accuracy. Challenged by new experiments, the uncertainty in theory predictions should be
accordingly reduced in both the SM and the MSSM.

In these proceedings the recent progress in the SM electroweak (EW) contribution after the
Higgs boson mass measurement and the fermion/sfermion two-loop corrections in the MSSM are
presented. These new results serve to reduce the uncertainty in the theory predictions.

2. The Electroweak SM prediction enhanced by the Higgs boson mass measurement

The SM EW one-loop contributions amount toaEW(1)
µ = (194.80±0.01)×10−11. Samples of

the EW two-loop Feynman diagrams are shown in Fig. 1. The Higgs dependence is found in the
first two categories of diagrams. The most precise estimation of the EW two-loop contributions
before the Higgs boson mass measurement was [5]

aEW
µ = (154±1±2)×10−11, (2.1)

where the first error,±1, is from the EW hadronic and three-loop contributions, andthe second,
±2, from the Higgs boson mass estimate.

This earlier estimation has been updated by calculating allHiggs-dependent diagrams exactly
and putting the measured Higgs boson mass into the obtained analytic form [8], and thus the uncer-
tainty due to the Higgs boson mass estimate has been eliminated. For the numerical evaluation we
employed the Higgs boson mass valueMH = 125.6±1.5 GeV, which is an average of the two cen-
tral values measured by ATLAS and CMS [9]. The conservative error, ±1.5, covers the 2σ range
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Figure 2: The exact and approximated results for Higgs-dependent diagrams with fermionic loops are
compared (a). The numerical result of the EW corrections is shown as a function of the Higgs boson mass
(b). In both graphs the vertical blue band indicates the measured Higgs boson mass.

of both measurements. The input parameters are the masses ofmuon, Z-boson and top-quark, the
muon decay constantGF , and the fine-structure constantα value at the Thomson limit [10]. The
W-boson mass is predicted in the SM [11] and we useMW = 80.363±0.013 GeV.

Using these parameters and combining our results with results of Refs. [5, 6, 7] we obtain the
following EW two-loop contributions:

aEW(2)
µ ;bos = (−19.97±0.03)×10−11, (2.2)

aEW(2)
µ ;f-rest,H= (−1.50±0.01)×10−11, (2.3)

aEW(2)
µ ;f-rest,no H= (−4.64±0.10)×10−11, (2.4)

aEW(2)
µ (τ , t,b) =−(8.21±0.10)×10−11, (2.5)

aEW(2)
µ (e,µ ,u,c,d,s) =−(6.91±0.20±0.30)×10−11. (2.6)

Eqs. (2.2) and (2.3) are results with Higgs dependence. The largest contribution comes from the
bosonic two-loop diagrams, Eq. (2.2), see Fig. 1(a) for a sample diagram. Eq. (2.3) is for Higgs-
dependent diagrams with a fermion loop: Fig. 1(b). Eq. (2.4)is the result forZ− γ mixing dia-
grams: Fig. 1(d). Eqs. (2.5) and (2.6) are results for diagrams withγγZ interaction with a fermion
loop: Fig. 1(c). The former is for the 3rd generation and the latter the 1st and 2nd generation
fermions. By combining these two-loop results evaluated with the measured Higgs boson mass
and the one-loop result we obtain [8]

aEW(2)
µ = (153.6±1.0)×10−11, (2.7)

where the remaining error,±1.0, is due to the electroweak hadronic part and the three and higher
order loop contributions. This amount of error is still tolerable after the new experimental result.
In Eq. (2.7) the error due to the uncertainties ofMH , mt andMW is below 10−12.

Fig. 2 shows the discrepancy between the exact results [8] and the approximated ones [6]. In
the low Higgs boson mass region the exact and approximated results are in agreement, whereas in
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Figure 3: The generic fermion/sfermion two-loop Feynman diagram (a)and four inner-loop diagrams con-
tributing to theχ̃0γ χ̃0 vertex (b).

the large Higgs boson mass region they do not agree with each other. This disagreement originates
from the higher order terms ofm2

t /M2
H , which are neglected in Ref. [6]. The exact result is, how-

ever, important to reduce the error. The second error,±2, in Eq. (2.1) originated from the three
approximated points in Fig. 2 and this error has been eliminated by applying the measured Higgs
boson mass value into the exactly calculated analytic result [8].

3. The MSSM fermion/sfermion two-loop corrections and their non-decoupling
behaviour

MSSM is still one of the most favoured scenarios to explain the 3σ deviation, even though
many SUSY scenarios with light super particles have alreadybeen ruled out by the LHC. At this
point, it is worth studying non-trivial SUSY mass patterns.In Refs. [12, 13] several characteristic
benchmark points are defined, with which SUSY contributionsamount to the current 3σ deviation.
They involve in particular large mass splittings, for example largeµ (see also Ref. [14]) or heavy
left-handed smuon mass. It is also relevant to obtain a precise MSSM prediction for(g−2)µ . Here
we briefly review the exact fermion/sfermion two-loop results of Refs. [12, 13].

The generic fermion/sfermion two-loop Feynman diagram is illustrated in Fig. 3(a). The
fermion/sfermion diagrams can be put into four categories according to inside running neutralino
or chargino and also the charged particle with which the outer photon couples. The diagrams
where the outer photon couples with fermion or sfermion in inner loops are called vertex-type and
those where the outer photon couples with smuon or chargino self-energy-type. Using these crite-
ria the fermion/sfermion two-loop diagrams are categorised in four types: neutralino-vertex-type,
neutralino-self-energy-type, chargino-vertex-type andchargino-self-energy-type.

These diagrams do not only have additional parameter dependence onMUi, MDi , MQi, MEi

andMLi (U , D, Q, E andL denote the supermultiplet, andi denotes the generation) compared to
the one-loop and the photonic two-loop contributions [15] but are also important to investigate the
non-conventional mass spectra, where squarks and sleptonshave large mass splitting.
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Figure 4: For BM1 we set 2M1 = M2 = 300 GeV,mµ̃R = mµ̃L = 400 GeV,µ = 350 GeV, and tanβ = 40,
and for BM4M1 = 140 GeV,mµ̃R = 200 GeV,M2 = mµ̃L = 2000 GeV,µ =−160 GeV, and tanβ = 40.

The fermion/sfermion result has yet another important feature: they contain the large universal
quantities∆α and∆ρ . The ambiguity in the one-loop results, which is caused by the definition ofα ,
is solved by including these fermion/sfermion two-loop contributions with a proper renormalization
scheme adapted.

One method to obtain the two-loop analytic result is the iterated one-loop calculation method:
the inner loops are calculated first and their results are inserted into the outer loops to complete
the two-loop calculation. The sums of the inner loops produce compact and simple vertices, which
makes the calculation effective. For example, the four diagrams in Fig. 3(b) are the inner-loop
diagrams contributing to the neutralino-vertex-type diagrams and the sum of these four diagrams
builds an effectivẽχ0γ χ̃0 vertex,

Γ0µ
i j f̃k

(ℓ) =
1

16π2 eQf

∫ 1

0

dw
2

[

(

A
n+
i j f̃k −A

n−
i j f̃kγ5

) /ℓ/qγµ −/ℓqµ +/qℓµ − (ℓ ·q)γµ

D f f̃k(ℓ)

+
(

B
n+
i j f̃k −B

n−
i j f̃kγ5

) mf

w
/qγµ −qµ

D f f̃k(ℓ)

]

, (3.1)

wherew is the Feynman parameter,D f f̃k(ℓ)≡ ℓ2−m2
f f̃k
(w), with m2

f f̃k
(w)≡

m2
f

w +
m2

f̃k
1−w. A

n+
i j f̃k and

B
n+
i j f̃k are the coupling combinations defined in Ref. [13]. It is not difficult to show that Eq. (3.1)

satisfies the Ward-Identity.
In Fig. 4 the results of numerical analyses with varied squark masses are presented. Fig. 4(a)

shows the benchmark point BM1 where the smuon masses are of the same order, whereas in BM4
in Fig. 4(b) there is a large mass splitting between smuon masses. In both Figs. 4(a) and 4(b)
the non-varied squark masses are kept at 7 TeV and the third generation slepton masses at∼
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3 TeV. For the benchmark points in Fig. 4 these new fermion/sfermion two-loop corrections are
up to 10% for small sfermion masses, and up to 30% for large ones, and their non-decoupling
behaviour is observed already at the moderate squark mass scale [12, 13]. The three additional lines
show contributions from photonic two-loop diagrams, tan2β -enhanced and 2L(a) contributions,
see Refs. [15, 16, 17]. These three lines are constant, sincethey have essentially no squark mass
dependence.

It is the chargino involving diagrams that are responsible for the non-decoupling behaviour.
The chargino results contain such logarithmic terms as ln

mf̃

mν̃µ
[13], and when the mass splitting

betweenmf̃ andmν̃µ is large, these logarithmic terms become dominant and the non-decoupling
behaviour is observed. On the contrary, when the sfermion masses in the inner loops are of the
order of the muon sneutrino mass, the logarithmic terms vanish numerically.

Depending on the squark and slepton mass scales the fermion/sfermion two-loop corrections
range around(10...30)% to the MSSM one-loop corrections, whereas the photonic two-loop cor-
rections around−(7...9)% [15]. In the logarithmically enhanced parameter range it is possible
to use the leading logarithmic approximation. A very compact approximation formula is found
in Ref. [13] and its Mathematica implementation in Ref. [18], which serves as a useful tool to
investigate various mass spectra.
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