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Positronium, an electromagnetic bound state of an electron and a positron, is the lightest
known atom. The strong interaction effects in positronium are suppressed by the small ratio of the
electron mass me to the hadronic mass scale, and the properties of the bound state can be calculated
perturbatively in quantum electrodynamics (QED) as an expansion in Sommerfeld’s fine-structure
constant α , with very high precision only limited by the complexity of the calculations. Positron-
ium is thus a unique laboratory for testing the QED theory of weakly bound systems. At the same
time a deviation of the QED predictions from the results of experimental measurements may be a
signal of an exotic “new physics” [2].

Positronium hyperfine splitting (HFS) is defined by the mass difference between the spin-
triplet orthopositronium and spin-singlet parapositronium states. Already three decades ago HFS
in positronium has been determined with the precision of about ten parts in a million [3, 4] yielding

∆νexp = 203.3875(16)GHz (1)

and
∆νexp = 203.38910(74)GHz, (2)

respectively. Recently a new result with reduced systematic uncertainty from the positronium ther-
malization effect has been reported [5]

∆νexp = 203.3942(16)stat.(13)syst. GHz, (3)

which overshoots the previous measurements by 2.6 standard deviations.
The present theoretical knowledge may be summarized as:
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, (4)

where ∆νLO = 7
12 α4me is the leading-order result [6, 7, 8]. The first-order term in Eq. (4) has been

computed in Ref. [9]. The second-order corrections have been derived by several authors [10, 11,
12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22]. In the order α7me the double-logarithmic [23] and the
single-logarithmic terms [24, 25, 26] are known, while the nonlogarithmic coefficient D is not yet
available. Including all the terms known so far, we have [26]

∆ν th = 203.39169(41)GHz, (5)

where the error is estimated by the size of the third-order nonlogarithmic contribution to the HFS in
muonium atom [27], which however does not include annihilation and recoil effects. The result (5)
is above the experimental values (1) and (2) by 2.6 and 3.5 standard deviations, respectively. At
the same time, it is only 1.2 standard deviations below the most recent result (3). Thus the status
of the QED prediction for positronium HFS remains ambiguous.

Much activity is currently under way to improve the experimental precision [28, 29]. On
the theoretical side the accuracy is limited by the unknown third-order coefficient D. The corre-
sponding uncertainty may soon become a limiting factor in the study of positronium HFS and the
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calculation of the nonlogarithmic third-order term in Eq. (5) would be timely. This calculation,
however, is an extremely challenging problem of perturbative quantum field theory complicated by
the presence of multiple scales and bound-state dynamics.

The first major step towards the solution of this problem has been done in Ref. [1], where the
complete result for the O(meα7) one-photon annihilation contribution has been derived. The per-
turbative corrections to HFS split into nonannihilation (radiative, radiative-recoil, and recoil correc-
tions), one- and multiple-photon annihilation contributions. The nonannihilation and one-photon
annihilation parts constitute about 47% and 32% of the second-order nonlogarithmic correction,
respectively. Thus the one-photon annihilation contribution to the coefficient D presumably gives
a significant fraction of the total nonlogarithmic third-order correction.

In the following, we briefly outline our method of calculation. Perturbation theory of the
positronium bound state has to be developed about the nonrelativistic Coulomb approximation
rather than free electron and positron states. This can be done within the nonrelativistic effective
field theory [30], which is a systematic way to separate the multiple scales characteristic to the
bound-state problem. The bound-state dynamics involves three different scales: the hard scale
of electron mass me, the soft scale of the bound-state three-momentum α me, and the bound-state
energy α2me. Integrating out the hard and soft degrees of freedom results in the potential nonrela-
tivistic QED (pNRQED) [31], an effective Schrödinger theory of a nonrelativistic electron-positron
pair interacting with ultrasoft photons, which is a relevant framework for the calculation of the QED
corrections to the positronium spectrum. We use dimensional regularization to deal with spurious
divergences which appear in the process of scale separation. Systematic use of dimensional reg-
ularization [20, 32, 33] based on the asymptotic expansion approach [34, 35] is instrumental for
the high-order analysis as it provides “built in” matching of the effective theory calculations to full
QED.

The positronium HFS is given by the difference between the binding energy of the ortho
and parapositronium states ∆ν = Eo − Ep. The leading order result can be written as ∆νLO =([1

3

]
sct +

[1
4

]
ann

)
α4me, where nonannihilation (scattering) and one-photon annihilation contribu-

tions are given separately. By spin/parity conservation only the orthopositronium state is affected
by the one-photon annihilation. The corresponding correction to the binding energy Eo can be
obtained by studying the threshold behavior of the vacuum polarization function Π(q2)(

qµqν −gµνq2)Π(q2) = i
∫

ddxeiqx ⟨0|T jµ(x) jν(0)|0⟩, (6)

where jµ is the electromagnetic current, q2 = (2me +E)2 and E is the energy counted from the
threshold. Only one-particle irreducible contributions are retained on the right-hand side of Eq. (6)
and the on-shell renormalization of the QED coupling constant requires Π(0) = 0. The vacuum po-
larization function has bound-state poles at approximately Coulomb energies EC

n =−α2me/(4n2)

with spin (orbital) angular momentum S = 1 (l = 0). Near the orthopositronium ground-state en-
ergy Eo = EC

1 +O(α4) it reads

lim
E→E ′

o

Π(q2) =
α
4π

Ro

E/E ′
o −1− iε

, (7)

where E ′
o stands for Eo without the total one-photon annihilation contribution. The pole position

differs from the physical orthopositronium mass since the vacuum polarization function is defined
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(a) (b)

Figure 1: Three-loop Feynman diagrams contributing to (a) Ro and (b) Po.

as the one-particle irreducible contribution to the current correlator (6). By subtracting the pole one
gets the regular part of the vacuum polarization function at E = E ′

o

Po = lim
E→E ′

o

(
e2Π(q2)− α2Ro

E/E ′
o −1− iε

)
. (8)

Within the quantum-mechanical perturbation theory of pNRQED it is straightforward to derive the
following expression for the one-photon annihilation contribution to the HFS

∆1−γ
ann ν = ∆1−γ

ann Eo =
α4me

4
Ro

1+Po
. (9)

The factor Ro in this equation has a natural interpretation: annihilation is a local process which
probes the positronium wave function at the origin and the residue of Eq. (7) defines this quantity
in full QED beyond nonrelativistic quantum mechanics. On the other hand the factor 1/(1+Po)

results from the Dyson resummation of the vacuum polarization corrections to the off-shell photon
propagator in the annihilation amplitude. Eq. (9) can be computed order by order in perturbation
theory

∆1−γ
ann ν =

α4me

4

[
1+ ∑

n=1

(α
π

)n
h(n)

]
, (10)

where the coefficients h(n) are determined by the series Ro = 1 + ∑n=1
(α

π
)n r(n) and

Po = ∑n=1
(α

π
)n p(n) so that h(1) = r(1) − p(1) and so on. For the calculation of the third order

corrections to the HFS we need all coefficients r(n) and p(n) up to n = 3. Typical three-loop Feyn-
man diagrams contributing to Ro and Po are presented in Fig. 1.

The first-order coefficients get only a one-loop hard contribution r(1) = −4 and p(1) = 8/9,
which yields h(1) = −44/9. In the second order the soft scale starts to contribute and one has to
take into account an arbitrary number of Coulomb photon exchanges. The second-order correction
to Ro can be read off the QCD result for the photon-mediated heavy quarkonium production rate
[36, 37, 38, 39] by adopting the QED group factors CF = 1, CA = 0, TF = 1, as well as the number
of the light (heavy) fermions nl = 0 (nh = 1)

r(2) =
527
36

+

(
−2

3
lnα − 235

72
+2ln2

)
π2 −ζ (3), (11)

where ζ (3) = 1.20206 . . . is a value of Riemann’s zeta-function. By using the method outlined
above we evaluate the second-order correction to Po with the result

p(2) =
3
4
+

(
− lnα +

27
16

− ln2
2

)
π2

2
− 21

8
ζ (3). (12)
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This gives

h(2) =
1477
81

+

(
− lnα

6
− 1183

288
+

9
4

ln2
)

π2 +
13
8

ζ (3), (13)

in agreement with Ref. [17].
The third-order coefficients get contributions from all the scales present in the problem. By

adjusting the QCD results [40, 41] we obtain the following expression

r(3) = −383
18

+

[
−3

2
ln2 α +

(
− 7

90
+8ln2

)
lnα

− 1019
180

−4ln2+δ us
o

]
π2 +2ζ (3)− 109

864
π4 +2c(3)v0 .

(14)

Here δ us
o is an analog of the Bethe logarithm in hydrogen Lamb shift, which parametrizes the ultra-

soft contribution [40]. It does not scale with the group factors and requires independent evaluation
in the QED case, which gives δ us

o = 18.8646(17) in agreement with [42]. The coefficient c(3)v0 in
Eq. (14) parametrizes the third-order hard contribution to the Wilson coefficient in the effective the-
ory decomposition of the vector current j = cvψ†σ χ + . . . in terms of the nonrelativistic electron
and positron two-component Pauli spinors ψ and χ . The third-order term of the perturbative series
cv = 1+∑∞

n=1(
α
π )

nc(n)v is given by the three-loop vertex diagrams (see e.g. Fig. 1(a)) evaluated
at the threshold and has been recently computed in QCD [43]. The coefficients of the series are
in general infrared divergent. These spurious divergences result from the scale separation in the
effective theory framework and cancel out in the final result for physical observables. The value
c(3)v0 = 35.76± 0.53 corresponds to the coefficient c(3)v defined within the MS subtraction scheme
at the renormalization scale µ = me. The logarithmic part of Eq. (14) agrees with Ref. [44]. The
third-order term in Eq. (8) reads

p(3) = (2lnα −3)π2 + p(3)h0 , (15)

where the last term parametrizes the third-order hard contribution given by the three-loop vacuum
polarization diagrams (see e.g. Fig. 1(b)) evaluated at the threshold. As in the case of the vertex
correction, this quantity is infrared divergent and the coefficient p(3)h0 = 0.16±0.04 corresponds to
the MS subtraction scheme with µ = me. By adding up all the relevant terms we get

h(3) =−3
2

π2 ln2 α +

(
−1181

270
+8ln2

)
π2 lnα +h(3)0 , (16)

where the nonlogarithmic part reads

h(3)0 = −49309
1458

+

(
16573
3240

− 65
9

ln2+δ us
o

)
π2 − 221

18
ζ (3)− 109

864
π4 +2c(3)v0 − p(3)h0 , (17)

or numerically h(3)0 = 197.8±1.1. In the above equation the scheme dependence of the coefficients
c(3)v0 and p(3)h0 is canceled by the scheme dependence of the analytic part, which is also given in
MS scheme. From the effective theory point of view the structure of the third-order logarithmic
corrections in the one-photon annihilation contribution to the positronium HFS is identical to the
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ln2 α lnα D/π2

Positronium −3
2 −62

15 +
68
7 ln2 ≈ 2.6001 8.59(5)1−γ

ann

Muonium −8
3 −281

180 +
8
3 ln2 ≈ 0.2873 16.233

Table 1: The coefficients of α3/π in perturbative series for positronium and muonium HFS.

orthopositronium three-photon decay width. The coefficients of the logarithmic terms in Eq. (16)
do agree with the series for the width [45, 46, 47] up to a substitution of the coefficient Ao

3 →−2
3 h(1)

in the interference term between the one-loop and the two-loop single-logarithmic corrections.
Finally for the third-order nonlogarithmic one-photon annihilation contribution to the HFS we

obtain
D1−γ

ann =
3
7

h(3)0 = 84.8±0.5 . (18)

The coefficients of the third-order corrections to HFS in positronium and muonium atom [27] are
compared in Table 1. It is interesting to note that the ultrasoft contribution due to δ us

o approx-
imates the complete result (18) with 5% accuracy. The nonannihilation contribution includes a
similar term and we may speculate that it is also dominated by the ultrasoft contribution. This
does not seem implausible since the fully relativistic corrections from the hard scale are known
to usually be suppressed. For example, the pure radiative corrections to the HFS related to the
electron anomalous magnetic moment ae, ∆aeν = (α4me/4)

[
(1+ae)

2 −1
]
, gives only a tiny con-

tribution Dae = 1.16229 . . ., where we used the two and three-loop result for ae [11, 48]. Another
example is a recently computed nonannihilation correction due to closed electron loops [49, 50],
which is also numerically suppressed. In this case the nonannihilation contribution would be given
by Dsct ≈ 4π2

7 δ us
o ≈ 106, which slightly exceeds the one-photon annihilation contribution (18) in

full analogy with the structure of the second-order corrections. Then we get an estimate D ≈ 191,
which is close to the muonium result.

To summarize, the calculation of the O(α7me) one-photon annihilation contribution to the
positronium HFS [1] provides the first nontrivial third-order QED result in positronium spec-
troscopy beyond the logarithmic approximation. This opens a prospect of advancing the theoretical
analysis of positronium to a completely different level of precision. Numerically the new contribu-
tion increases the QED prediction by 217± 1 kHz. Our final prediction for the positronium HFS
including the O(α7me) one-photon annihilation term reads

∆ν th = 203.39191(22)GHz , (19)

where the error due to the missing part of the O(α7me) corrections is given by the size of the
evaluated one-photon annihilation contribution (18).
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