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Xtreme manipulations J.A.M. Vermaseren

1. Introduction

With the running of the LHC and the absence of obvious new physics the need for
precision calculations has become only bigger. Also preparations for a new linear collider
will need high precision calculations. The purpose of such an ILC will be a look ahead
through precision measurements.

It is a well known property of symbolic calculations that intermediate expressions may
be many times the size of either inputs or outputs. This is called intermediate expression
swell. The capability of a symbolic system to deal will this determines how suitable it is
for very large calculations. Of course one may also consider hybrid methods in which only
the stages of a calculation in which the intermediate expression swell becomes relevant are
dealt with by a system that can handle it, while the other stages are processed by other
systems.

Of course, when the expressions become big, the total amount of CPU power will
also increase, although the exact relation depends on the nature of the problem and the
algorithms used for its solution.

Here we will look at various forms of extreme behaviour.
D
¯
isclaimer: I am not claiming that I am the first to run into these problems. It is

just that I could only study them by the time I ran into them myself, and then use the
experience to improve Form [1]. One should realize that trying such things out may require
enormous resources. Some users have more than I do.

2. Extreme Sizes

Here I am going to look at the tweaking of the Mincer program [2, 3, 4] to allow for the
running of rather high Mellin moments (up to N = 29). Mincer is a program for evaluating
massless three loop propagator diagrams. We use it here for computing Mellin moments of
forward scattering in deep inelastic scattering [5, 6]. The state of Mincer a bit over a year
ago allowed it to run some of the more difficult diagrams up to Mellin moments N=15, and
there it got into trouble. We were running processes in which the external current is taken
to be a graviton, as explained in the talk of Andreas Vogt [7]. This means that there are
more diagrams, there are many more terms in the projection operators and there are more
powers of the momentum P in the projection operators.

Below is one of the projection operators in which terms that should be zero because
of gauge invariance have been dropped:

Multiply (
-d_(K1,be1)*d_(K2,be2)*d_(al1,al2)*P.Q^4*Q.Q^-4
+d_(K1,be2)*d_(K2,be1)*d_(al1,al2)*P.Q^4*Q.Q^-4
-d_(K1,be1)*d_(K2,be2)*P(al1)*P(al2)*P.Q^2*Q.Q^-3
+d_(K1,be2)*d_(K2,be1)*P(al1)*P(al2)*P.Q^2*Q.Q^-3
-d_(K1,be1)*d_(al1,al2)*(P(K2)-Q(K2)*P.Q/Q.Q)*P(be2)*P.Q^2*Q.Q^-3
+d_(K1,be2)*d_(al1,al2)*(P(K2)-Q(K2)*P.Q/Q.Q)*P(be1)*P.Q^2*Q.Q^-3
+d_(K2,be1)*d_(al1,al2)*(P(K1)-Q(K1)*P.Q/Q.Q)*P(be2)*P.Q^2*Q.Q^-3
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Figure 1: Running profile of an O226 subtopology at N=27.

-d_(K2,be2)*d_(al1,al2)*(P(K1)-Q(K1)*P.Q/Q.Q)*P(be1)*P.Q^2*Q.Q^-3
-d_(K1,be1)*(P(K2)-Q(K2)*P.Q/Q.Q)*P(al1)*P(al2)*P(be2)*Q.Q^-2
+d_(K1,be2)*(P(K2)-Q(K2)*P.Q/Q.Q)*P(al1)*P(be1)*P(al2)*Q.Q^-2
+d_(K2,be1)*(P(K1)-Q(K1)*P.Q/Q.Q)*P(al1)*P(al2)*P(be2)*Q.Q^-2
-d_(K2,be2)*(P(K1)-Q(K1)*P.Q/Q.Q)*P(al1)*P(be1)*P(al2)*Q.Q^-2

)*4/Q.Q;
#define PROJ "4"

The problem was that Andreas needed a few more moments to produce nice physics. Hence
the Mincer code needed to be improved, because at the time it was optimized for moments
in the range of 10 to 12 with simpler projection operators. Examples of running profiles (a
histogram of the expression size at the end of each module) for various (sub)topologies are
shown in Figs 1, 2, 3:

These examples show that each topology and each subtopology has to be optimized
individually. This is quite some work.

Some of the generic improvements that were made to get this far were

A Put diagrams with the same subtopology, the same color factor and the same flavor
structure together as if they are a single diagram. It turns out that this combined
set usually takes not much more time than the most expensive diagram in the set.
The gain in time is a factor in the range of 3 and 5.

B Spend some effort in rerouting the P flow through the diagram. It is very important
that the number of propagators to be expanded is minimal.

C Group the recursions in such a way that there are neither too few nor too many of them
in one module. This requires experimentation.

D Make sure that momentum substitutions are economical.
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Figure 2: Running profile of a NO25 subtopology at N=27.
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Figure 3: Running profile of a LA14 subtopology at N=29.

Ad A: Kostia Chetyrkin and collaborators have been doing this for years with even the
color factors worked out for SU(3) [8] so that they become numbers and even more diagrams
can be grouped together. In the first Mincer calculations this was not done, because the
concept of subtopologies was not well developed and mixing different subtopologies gave
severe space problems. Also Form was less flexible in those days. Hence diagrams were
treated one by one with the spinoff that color factors were in terms of group invariants.

Ad B: The selection of which propagators are the ones that need to be expanded is
critical. Often rewriting of the momenta can help very much as illustrated in Fig 4.

This is particularly important for the diagrams that peak during the harmonic projec-
tion or shortly after, but the non planar recursions are also very sensitive to this.

Ad C: If the full reduction takes for instance 30 steps and we do them all in a single
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Figure 4: Transformation rules for the P-momentum flow (red line).

module, we may generate an astronomical number of terms. The sorting will take care of
this, but the step may take way too much time. If in each module we do a single step,
there will be too much sorting of terms that were not affected. The optimum is to to do
a number of recursion steps in each module. The precise number needs to be obtained by
experimentation.

Ad D: The vector substitution

id p1 = p3-p5;

can cause problems, because powers of dotproducts will be written out without the use of
binomial coefficients. Hence p1.p2^20 would generate 220 terms. Writing

id p1.p1 = p3.p3-2*p3.p5+p5.p5;
id p1.p? = p3.p-p5.p;

is far more economical, because now Form can use binomial coefficients.

3. Extreme Times

The following is the final line of a program that proved a critical identity for Multiple
Zeta Values. It confirmed a guess about the basis for MZV’s of weight 27 and showed
the first double pushdown which had been predicted in the paper about the Multiple Zeta
Value datamine [9, 10].

171258.46 sec + 55845418.93 sec: 56016677.39 sec out of 7345664.84 sec

This is a rather impressive time: 85 days (648 days of CPU time). It was the biggest
computer I could lay my hands on at the time (2010). The program had to be run like this,
because we (Jan Kuipers and I) could not find a way to cut the job in pieces. Actually,
it was already the result of cutting a bigger program in 9 pieces. This was the biggest
irreducible piece.

We run here into a problem that is all too familiar to some people: if you need to run
a job this size and you do not have a big enough computer to run this ‘in house’, you need
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to use the equipment of a computer center. Usually they will not allow jobs that take this
long. They will definitely not garantee more than a month uptime.

There are several ways to tackle this problem.

1. Have the computer center get a more powerful computer.

2. Get the money to buy an adequate ‘in house’ computer.

3. Find a way to cut up your job further.

One way to have a more powerful computer is to have more cores. We will come to
that later.

Fortunately, in principle, Form has a solution provided you have enough diskspace. It
is called the checkpoint facility in which one can make, at the end of each module, a safety
backup of the current state. Only one such backup is made, which means that older ones
will be removed automatically. Hence, if your program crashes because the computer was
turned off, you can restart it later at the beginning of the module in which it was at the
moment of the crash. Of course, it will cost some extra time to write such a backup if your
program uses much memory and large files. Now, when the computer center kills your job,
you can restart it with hopefully not too big a loss.

Unfortunately I am not aware of people having tried out this checkpoint facility ex-
tensively. Hence, my guess is that for now it may still contain errors. When Jens Vollinga
created it, it worked on all his examples, but whenever there are new features, the cor-
responding variables have to be added and it is not clear that this has always been done
correctly. It is just that people should be aware of this possibility, and if they try it and
there are indeed problems the Form team will do its best to resolve those as soon as
possible.

Of course, if one is already using most of the disks, there may not be enough space for
the backup files. In that case one may have to look at the other possibilities mentioned
above, with the remark that a bigger disk is often the cheapest and easiest solution.

4. Extreme Executables

Recently I had a masterstudent (Otto Rottier) who’s task it was to make some extra
software for the GRACE [11] system and then try it all out on some ‘simple’ reactions
like e+e−→ ZZh or e+e−→ Zhh. He was also to provide some manuals in the form of a
master thesis [12].

It should be known that systems like the GRACE system are complex and when one
tries new things one may still run into cases that have not been considered before, Hence
there may be missing or incomplete code.

We ran into a gauge problem in the second reaction. Fortunately this reaction has been
computed before. This was however with the old Reduce [13] version of GRACE [14]. The
task became now to compare the two. To make things easier we removed the vertices in
which the electrons couple to scalars. This brings the number of loop diagrams down by
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Type of Files Lines Size
.red 6,040,575 121,719,873
.f .F 39,988,122 2,604,161,410
.o 19,290,341,352

test0 8,???,???,???

Table 1: File sizes with the Reduce version of GRACE. Fortran compilation was with -O0. The
total running time was a bit more than 8 hours. .red are the Reduce files, .f and .F the Fortran
files and .o the object files after compilation. Test0 indicates the size of the executable.

Type of Files Lines Size
.frm 1,296,681 27,126,191

*.f *.F 5,624,124 149,450,518
*.o (-O0) 713,971,472
test0 (-O0) 333,242,881
*.o (-O3) 163,567,952
test0 (-O3) 103,879,860

Table 2: File sizes with the Form version of GRACE. Fortran compilation was with -O0 and -O3.
The total running time was a bit more than 2 hours. .frm are the Form files, .f and .F the Fortran
files and .o the object files after compilation. Test0 indicates the size of the executable.

almost a factor 3 and the number of tree graphs by an even bigger factor. We first checked
in the Form version that these diagrams were not the cause of our problems.

All runs were on a computer with 24 cores. The code was compiled in double precision
with ifort, the Intel Fortran compiler. The tables 1, 2 show some properties of the resulting
code and programs.

What one sees here is:

• The more sophisticated output optimizations of Form (procedures to compactify the
expressions in combination with the built in output optimizations [16]) are almost a
requirement.

• By the time we start doing 2→ 4 reactions also the Form executables will exceed
the magic 2 Gbytes limit. Programs will need to be split up.

• It seems impossible to compile the Reduce output with any type of optimization.
Already at -O0 some files take more than 2 hours on this fast processor.

• The Form optimization prepares the output very well for the compiler. The total
compilation time was of the order of 5 minutes, even with the -O3 option.

At the moment a graduate student (Ben Ruyl) is working on improving the optimiza-
tions even further and make Form execute them much faster.

The splitting of the programs can be done in several ways. The original approach in
the GRACE system is to split the matrix element in pieces, each in a separate program.

7
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Weight workers CPU Time at end Real Time
20 - 41265.26 sec 41300.92 sec
20 0 43219.45 sec + 0.00 sec: 43219.45 sec 43250.09 sec
20 1 11778.75 sec + 36006.46 sec: 47785.21 sec 47026.03 sec
20 2 2156.57 sec + 44627.86 sec: 46784.44 sec 24455.02 sec
20 4 2122.24 sec + 47252.28 sec: 49374.52 sec 14054.96 sec
20 8 2402.49 sec + 50515.10 sec: 52917.60 sec 8951.90 sec
20 12 2496.42 sec + 54214.88 sec: 56711.31 sec 7256.94 sec
20 16 2570.70 sec + 56982.59 sec: 59553.29 sec 6304.62 sec
20 20 2637.25 sec + 62331.76 sec: 64969.01 sec 6035.57 sec
20 24 2628.24 sec + 66821.74 sec: 69449.98 sec 5722.42 sec

Table 3: Real time as a function of the number of workers. A dash indicates sequential Form. A
zero means that in TForm the master does all the work.

All these programs are then commanded from a single master program that makes each
of them evaluate their pieces of the matrix element for identical Monte Carlo points and
return their values to the master. The master adds them, evaluates the efficiency of the
integration and decides on a new set of Monte Carlo points for all workers. This way the
gauge cancellations are not polluted by the Monte Carlo statistics. This method and a
new implementation of the software for it is described in more detail in the master thesis
of Otto Rottier [12].

The newer approach is to make sets of diagrams into position independent library
files that can be dynamically linked (.so files). Although a complete executable with all
diagrams in it cannot exceed 2 Gbytes (limitation by omission in the GNU software), this
seems to work well even though loading the program can be slow.

Each method has advantages and disadvantages.

5. Extreme Computers

From the previous sections it should be clear that any increase in power of symbolic
systems immediately makes more problems solvable. I will concentrate on Form of course,
but it may be noted that recently Maple greatly enhanced its polynomial performance by
creating specialized code for dealing with polynomials [15]. The interesting part is that its
internal notation has evolved a little bit in the direction of the Form notation. Because it
is completely programmed in C and treats only polynomials, it is rather fast.

One way to improve the performance of Form is to improve its parallel capabilities.
This is not as easy as it seems. Table 3 shows how using more cores can give saturation
effects.

This can only be improved up to a point. There will always be an entity that is in
charge of the ‘whole’, but in my viewpoint there are ways to defuse most of the bottlenecks.
This will however involve more research in methodology.
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Figure 5: Performance of a Phi accelerator board on a floating point benchmark.

A second step involves massive numbers of cores on coprocessor boards. In this case
one should abandon the concept that we should use the available CPU resources completely.
If one has one or more boards with thousands of cores, one has basically a near infinite
amount of CPU power as compared to the capabilities of getting information in the right
place at the right time. The data transfer will become the big bottleneck. If this is all to
take place inside a single computer, bus congestion and cache use may become a frequently
used words. In that case a good network and many individual computers (each with a
number of cores) would become interesting. This is why both the TForm [17] and the
ParForm [18] concepts are viable, even though at the moment TForm is easier to use.

At the moment we have started to experiment with the Intel Phi accelerator board.
This is the task of a new graduate student Ali Mirsoleimani. Fig. 5 shows one of his
benchmarks. Of course we cannot use vector pipes very well in Form, because about 20%
of its C-code involves if-statements, but we should be able to pick up some of this nice
speed.

The third step involves the development of new algorithms to do calculations. Al-
gorithms that allow formulas to be processed in a distributed way without much loss in
performance. If we go back to the graph of Fig. 1 with the two steps that blow up the
formula, one with a collapse of a factor 40 (number of generated terms divided by number
of terms in the output) and the second with a collapse of a factor 6, it is possible to split
up the calculation, provided one can separate the input expression in such a way that there
is not much crosstalk between the pieces. This is not a simple task.

6. Conclusions

Because there is a need for big calculations, it is important to increase capabilities in
that direction. These directions include

• Better space control.
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• Faster code.

• Better use of multiple cores.

• More compact outputs.

• More sophisticated algebraic capabilities.

Acknowledgements: Some of the programs I have shown here were run on computers
at DESY (Zeuthen), Karlsruhe (KIT) and Liverpool. The others were run at Nikhef with
computers, some of them paid for by the ERC advanced grant 320651, "HEPGAME".
Work in the various examples was done while staying at Nikhef, DESY, KIT, KEK and
UAM-Madrid, and in a variety of collaborations.
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