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Single-scale Feynman diagrams yield integrals that are periods, namely projective integrals of
rational functions of Schwinger parameters. Algebraic geometry may therefore inform us of the
types of number to which these integrals evaluate. We give examples at 3, 4 and 6 loops of massive
Feynman diagrams that evaluate to Dirichlet L-series of modular forms and examples at 6, 7 and
8 loops of counterterms that evaluate to multiple zeta values or polylogarithms of the sixth root of
unity. At 8 loops and beyond, algebraic geometry informs us that polylogs are insufficient for the
evaluation of terms in the beta-function of φ 4 theory. Here, modular forms appear as obstructions
to polylogarithmic evaluation.
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1. Beyond polylogs: modular forms

We begin with a short guide to modular forms. For |q|< 1, let

η(q)≡ q1/24
∏
n>0

(1−qn) =
∞

∑
n=−∞

(−1)nq(6n+1)2/24

then for ℑz > 0,

η(exp(2πiz)) = (i/z)1/2
η(exp(−2πi/z)).

If f (z) = (
√
−N/z)w f (−N/z), we say that f is a modular form of modular weight w and level N.

Here is a well known example with modular weight 12 and level 1:

[η(q)]24 = ∑
n>0

A(n)qn = q−24q2 +252q3−1472q4 +4830q5−6048q6−16744q7 + . . .

Its Fourier coefficients are multiplicative: A(mn)=A(m)A(n) for gcd(m,n)= 1, and are determined
by A(p) at the primes p:

L(s)≡ ∑
n>0

A(n)
ns = ∏

p

1
1−A(p)p−s + p11−2s .

Moreover, we can analytically continue to values inside the critical strip:

Λ(s)≡ Γ(s)
(2π)s L(s) = ∑

n>0
A(n)

∫
∞

1
dx
(
xs−1 + x11−s)exp(−2πnx) = Λ(12− s).

1.1 Multiplicative modular forms from eta-products

For brevity, let ηn ≡ η(qn). Here are some multiplicative modular forms identified in quantum
field theory

form weight level QFT
η3

1 η3
7 3 7 BS

η2
1 η2η4η2

8 3 8 BS
η3

2 η3
6 3 12 BS+BFT+BBBG+BV

η4
1 η4

5 4 5 BS
η2

1 η2
2 η2

3 η2
6 4 6 BS+BB

η4
1 η2

2 η4
4 5 4 BS

η6
1 η6

3 6 3 BS
η12

2 6 4 BS
η8

1 η8
2 8 2 BS

η24
1 12 1 BK

from work by Bailey, Borwein, Broadhurst, Glasser [1] (BBBG), Bloch, Vanhove [2] (BV), Broad-
hurst, Brown [7] (BB), Broadhurst, Fleischer, Tarasov [8] (BFT), Broadhurst, Kreimer [9, 10] (BK),
Brown, Schnetz [11, 12] (BS).

Remark: QFT seems blind to Birch and Swinnerton–Dyer: nothing appears at weight 2.
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2. Beyond polylogs and elliptic integrals

Consider the two-loop massive sunrise diagram in D = 2 spacetime dimensions:

I(p2,m1,m2,m3)≡
1

π2

(
3

∏
k=1

∫ d2qk

q2
k−m2

k + iε

)
δ
(2)(p−q1−q2−q3).

Following BBBG, we obtain an efficient result from the discontinuity across the cut [1]:

I(w2,m1,m2,m3) = 8π

∫
∞

m1+m2+m3

A(x)xdx
x2−w2

with an elliptic integral yielding the reciprocal

A(w) =
2
π

∫
π/2

0

dθ√
F(w)cos2 θ +16m1m2m3wsin2

θ

=
1

agm
(√

F(w),
√

F(w)−F(−w)
)

of an arithmetic-geometric mean with

F(w) = (w+m1 +m2 +m3)(w+m1−m2−m3)(w−m1 +m2−m3)(w−m1−m2 +m3).

From the complementary elliptic integral

B(w) =
1

agm
(√

F(w),
√

F(−w)
)

we obtain the elliptic nome
q(w)≡ exp(−πB(w)/A(w)).

2.1 Differential equation in the equal–mass case

Now set m1 = m2 = m3 = 1. Then F(w) = (w+3)(w−1)3 and the differential equation, found
in 1993 with Jochem Fleischer (sadly deceased on 2 April 2013) and Oleg Tarasov [8], gives

−
(

q(w)
q′(w)

d
dw

)2( I(w2,1,1,1)
24
√

3A(w)

)
=

w2(w2−1)(w2−9)A(w)3

9
√

3
.

Regarding w and A(w) as functions of q, we have a parametric solution

w
3
=

(
η3

η1

)4(
η2

η6

)2

, 4
√

3A =
η6

1 η6

η3
2 η2

3
.

Moreover, the two algebraic relations between {η1,η2,η3,η6} give

w2−1
8

=

(
η2

η1

)9(
η3

η6

)3

,
w2−9

72
=

(
η6

η1

)5
η2

η3
.

Hence the BFT differential equation reduces to

−
(

q
d
dq

)2( I
24
√

3A

)
=

w
3

f3,12 =

(
η3

3
η1

)3

+

(
η3

6
η2

)3

where, remarkably, f3,12 ≡ (η2η6)
3 is a weight-3 level-12 modular form found in massless φ 4

theory by Brown and Schnetz at 9 loops [12].
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2.2 Bloch–Vanhove elliptic dilogarithm

Define a character with χ(n) =±1 for n =±1 mod 6 and χ(n) = 0 otherwise. Then

−
(

q
d
dq

)2( I
24
√

3A

)
= ∑

n>0

n2(qn−q5n)

1−q6n = ∑
n>0

∑
k>0

n2
χ(k)qnk.

Integrating twice and using the known imaginary part on the cut, we recover the BV result [2]

I(w2,1,1,1)
4A(w)

= E2(q) =−π log(−q)−3
√

3 ∑
k>0

χ(k)
k2

1+qk

1−qk =−E2(1/q)

with constants of integration that make I finite at the pseudo-threshold, where q =−1.

2.3 An elliptic trilogarithm at 3 loops

The equal-mass three-loop sunrise integral J(t) yields an elliptic trilogarithm for [3]

2J(t)
ω1(t)

= E3(q) = (−2log(q))3 + ∑
k>0

ψ(k)
k3

1+qk

1−qk =−E3(1/q)

with ψ(k) = ψ(k+6) = ψ(−k), ψ(1) =−48, ψ(2) = 720, ψ(3) = 384, ψ(6) =−5760 and

q = exp
(
−2π

3
A(w̃)
B(w̃)

)
where A and B are the elliptic integrals for the equal-mass two-loop case, but now evaluated at

w̃ =
√

1− t/4+
√

4− t/4.

Then the transformation between the Green functions for hexagonal and diamond lattices given by
BBBG in Eq. (188) of [1] provides ω1(t) = (w̃B(w̃))2 as a solution to the homogeneous equation
that is regular as t → ∞. Underlying the expression for q are the cubic and sesquiplicate modular
transformations of [6]. The constants of integration for E3(q) are determined by the requirement
that J(t) is finite as t→ 0 and reproduces the value J(0) = 7ζ (3) proven by BBBG [1].

3. Modular forms in massive QFT

Here we consider multi-loop on-shell sunrise diagrams in two spacetime dimensions. At L
loops, these are given in coordinate space as single integrals over N = L+2 Bessel functions: L+1
copies of K0(x) from the internal lines and a single I0(x) from Fourier transformation with respect
the external on-shell momentum. More generally, let

SN,L ≡ 2L
∫

∞

0
I0(x)N−L−1K0(x)L+1xdx.

Then S6,4 is indicative of some of the number theory entering g− 2 at 4 loops, where Stefano
Laporta is tackling diagrams with 5 fermions in the intermediate state.
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For convergence, we require that L < N ≤ 2L+ 2. With N = 2L+ 2 we require that L > 1.
BBBG proved that [1]

S1,0 = S2,1 = 1, S3,1 =
2π

3
√

3
, S3,2 =

4Cl2(π/3)√
3

, S4,2 =
π2

4
, S4,3 = 7ζ (3),

S5,2 =
π2

8

(√
15−

√
3
)( ∞

∑
n=−∞

e−
√

15πn2

)4

=

√
3

120π
Γ(1/15)Γ(2/15)Γ(4/15)Γ(8/15)

where the final product of Gamma values results from the Chowla–Selberg theorem. York Schröder
needed a counterterm in 3-dimensional lattice field theory[14] for which we used Chowla–Selberg
to obtain the product (Γ(1/24)Γ(11/24))2.

BBBG also conjectured (and checked to 1000 digits) that [1]

S5,3 =
4π√
15

S5,2, S6,4 =
4π2

3
S6,2, S8,5 =

18π2

7
S8,3.

Remark: In 4-dimensions, there are two master on-shell 3-loop sunrise integrals Amazingly,
the finite parts of their Laurent expansions are linear combinations of S5,3 and π6/S5,3, with the
reciprocal coming from Γ(7/15)Γ(11/15)Γ(13/15)Γ(14/15).

3.1 Sunrise at 3 loops from a modular form of weight 3

Let L3,15(s) be the Dirichlet L-function defined by the multiplicative modular form

f3,15 = (η3η5)
3 +(η1η15)

3

with weight 3 and level 15. Then we conjecture (and have checked to 1000 digits) that [7]

S5,2 = 3L3,15(2), S5,3 =
8π2

15
L3,15(1),

where S5,3 is the 5-Bessel moment giving the on–shell 3–loop sunrise diagram.

3.2 Sunrise at 4 loops from a modular form of weight 4

Let L4,6(s) be the Dirichlet L-function defined by the multiplicative modular form

f4,6 = (η1η2η3η6)
2

with weight 4 and level 6. Then we conjecture (and have checked to 1000 digits) that [7]

S6,2 = 6L4,6(2), S6,3 = 12L4,6(3), S6,4 = 8π
2L4,6(2),

where S6,4 is the 6-Bessel moment giving the on–shell 4–loop sunrise diagram.

3.3 Almost sunrise at 6 loops from a modular form of weight 6

Let L6,6(s) be the Dirichlet L-function defined by the multiplicative modular form

f6,6 =

(
η3

2 η3
3

η1η6

)3

+

(
η3

1 η3
6

η2η3

)3

with weight 6 and level 6. Then we conjecture (and have checked to 1000 digits) that [7]

S8,3 = 8L6,6(3), S8,4 = 36L4,6(4), S8,5 = 216L4,6(5),

but have no result for S8,6, the 8-Bessel moment for the on–shell 6–loop sunrise diagram.
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4. Counterterms at 6 to 10 loops

4.1 6 loops: the first MZV

In 1995, Broadhurst and Kreimer evaluated all the counterterms for the coupling of φ 4 theory
coming from subdivergence-free diagrams up to 6 loops [9]. All were expressible in terms of ζ (3),
ζ (5), ζ (7), ζ (9) and ζ (5,3)− 29

12 ζ (8), where the multiple zeta value ζ (5,3) = ∑m>n>0 m−5n−3 is
not reducible to single zeta values and occurs at 6 loops.

4.2 7 loops: unexpected products

At 7 loops, ζ (7,3)− 793
94 ζ (10), ζ (11) and ζ (3,5,3)− ζ (3)ζ (5,3) appear [9, 10]. In 1995,

three 7-loop counterterms were lacking: P7,8, P7,9 and P7,11 in the Schnetz census [18]. Allowing
for a product of ζ (3) with a 6-loop counterterm, we eventually determined

P7,8 =
22383

20
ζ (11)+

4572
5

[ζ (3,5,3)−ζ (3)ζ (5,3)]−700ζ (3)2
ζ (5)

+1792ζ (3)
[

9
320

[12ζ (5,3)−29ζ (8)]+
45
64

ζ (5)ζ (3)
]
,

P7,9 =
92943

160
ζ (11)+

3381
20

[ζ (3,5,3)−ζ (3)ζ (5,3)]− 1155
4

ζ (3)2
ζ (5)

+896ζ (3)
[

9
320

[12ζ (5,3)−29ζ (8)]+
45
64

ζ (5)ζ (3)
]
.

4.3 7 loops: failures of the Kontsevich conjecture

A sub-divergence free φ 4 counterterm is of interest to algebraic geometers who regard it as a
rather special type of “period". At 7 loops, with 14 edges, we have an integral over 13 Schwinger
parameters:

PG =
∫

αi>0

dα2 . . .dα14

|ΨG(α1,α2, . . . ,α14)|2α1=1

where physicists call ΨG the first Symanzik polynomial and graph theorists call it the Kirchhoff
polynomial of the graph G. Suppose that we count the number c(q) of solutions to ΨG = 0 in finite
fields Fq for prime powers q = pk. If c(q) is a polynomial in q, then algebraic geometers expect the
period PG to evaluate to MZVs.

Maxim Kontsevich conjectured that c(q) is a polynomial for every graph G. This was proved
true by Stembridge, by exhaustion, for all graphs with no more than 12 edges [21]. It is true for all
7-loop periods except [19] P7,8, P7,9 and P7,11.

It is the prime p = 2 that makes the periods P7,8 and P7,9 non-Stembridge [15, 19]. Thus they
were expected to be reducible to alternating sums in the MZV datamine [4]. Algorithms due to
Panzer and Schnetz have achieved this. In each case a complicated combination of alternating
sums collapses to MZVs, using the datamine.

4.4 7 loops: Erik Panzer’s polylogs of the sixth root of unity

For the period P7,11 the Stembridge count c(p) takes different forms according as the residue of
p mod 3 [19] as may be quickly determined using the c2 invariant of [13]. So we expect a reduction

6
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to weight-11 multiple polylogs of the 6th root of unity. There are 62×79 = 1,452,729,852 of these
with legal words.

Erik Panzer recently reported [17] a reduction of P7,11 to a subset of these words and hence
obtained several thousand digits of P7,11, completing the 7-loop challenge. We have checked this
answer to 21 digits, by intensive numerical methods. A compact presentation of Panzer’s lengthy
result has been obtained by Schnetz, using algebraic methods based on a co-action for polyloga-
rithms. Moreover, Panzer was able to use PSLQ to reduce his result to a basis of dimension 72,
resulting from applying the generalized parity conjecture of [5] to a three-letter Deligne alphabet.

4.5 8 loops: planar N = 4 supersymmetric Yang-Mills theory

Without evaluating Feynman diagrams, Sébastien Leurent and Dmytro Volin have computed
the Konishi anomalous dimension of planar N = 4 SYM up to 8 loops [16]. An MZV first appears
at 8 loops, where the weight-11 term

864g16

5
{

76307ζ (11)+792[ζ (3,5,3)−ζ (3)ζ (5,3)]−18840ζ (3)2
ζ (5)

}
is happily reducible to the 3 terms found in φ 4 theory almost 20 years ago [9, 10].

Open question: Do MZVs suffice for the next “wrapping” at 12 loops?

4.6 8 loops: further reductions to polylogs

There are 41 targets in the census at 8 loops [18]. Thanks to recent progress with graphical
functions [20] 31 of these have been evaluated in terms of polylogs. All periods for which weight-
drop was predicted have been reduced to MZVs of weight less than 13. One period, P8,16, exhibits
weight mixing, evaluating to a mixture of weight-10 and weight-11 MZVs. Schnetz has evaluated
the period P8,33 as a compact combination of weight-13 polylogs of the 6th root of unity. Of the 10
periods so far unidentified at 8 loops, it is anticipated that 6 may eventually be evaluated in terms
of MZVs and polylogs of 4th or 6th roots of unity.

4.7 8, 9 and 10 loops: modular obstructions to polylogs

Brown and Schnetz [12] have identified many periods with more than 7 loops for which there
is strong evidence that polylogs cannot suffice for evaluations. There is no chain of integration over
Schwinger parameters that satisfies the criterion of “linear independence" explained in [17]. In 16
cases, point counts in finite fields of the non-linear denominators correspond, modulo primes, to the
Fourier coefficients of well known modular forms. In particular (η1η7)

3, (η1η5)
4, (η1η8)

2η2η4

and (η1η3)
6 are the modular forms that prevent reduction to polylogs of 4 subdivergence-free

diagrams that give scheme-independent contributions to the 8-loop beta-function of φ 4 theory. For
these, one may need a theory of “multiple modular values" whose details are at present obscure.

Acknowledgements: We thank our colleagues Spencer Bloch, Francis Brown, Dzmitry Do-
ryn, Dirk Kreimer, Erik Panzer and Karen Yeats for many illuminating discussions of the periods
of quantum field theory and their relationship to algebraic geometry.
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