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Proton polarizabilities from polarized Compton
scattering: low-energy expansion
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We re-examine the low-energy expansion of polarized Compton scattering off the proton and
show that the leading non-Born contribution to the beam asymmetry of low-energy Compton
scattering is given by the magnetic polarizability alone, the electric polarizability cancels out.
Based on this fact we propose to determine the magnetic dipole polarizability of the proton from
the beam asymmetry. We also present the low-energy expansion of doubly-polarized observables,
from which the spin polarizabilities can be extracted.

52 International Winter Meeting on Nuclear Physics
27 - 31 January 2014
Bormio, Italy

c© Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike Licence. http://pos.sissa.it/

mailto:krupina@uni-mainz.de


P
o
S
(
B
o
r
m
i
o
2
0
1
4
)
0
2
7

Proton polarizabilities from polarized Compton scattering: low-energy expansion

Studies of nucleon polarizabilities have recently intensified fueled by theoretical advances
based on chiral perturbation theory and the current experimental programs at MAMI, HIGS and
CEBAF facilities, see Refs. [1, 2] for recent reviews. As a result, the Particle Data Group (PDG) [3]
has recently updated its summary of the dipole electric and magnetic polarizabilities of the proton,
yielding [4]:

α
(p)
E1 = (12.0±0.6)×10−4 fm3, (1a)

β
(p)
M1 = (2.5±0.4)×10−4 fm3. (1b)

These values, together with some other experimental and most recent theoretical results, are
displayed in Fig. 1. As the figure shows, the various determinations of polarizabilities may differ
by a few standard deviations. The main source of these discrepancies is the model dependence
of the extraction of polarizabilities from the unpolarized Compton scattering cross sections. The
forthcoming measurements of the beam asymmetry of proton Compton scattering are called for to
sort out this issue [5].

Besides the two scalar polarizabilities, the four spin polarizabilities of the proton are of sig-
nificant interest both theoretically and experimentally. New experiments at MAMI are aimed to
determine them. Two combination of spin polarizabilities have been already determined, i.e. for-
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Proton polarizabilities from polarized Compton scattering: low-energy expansion

Figure 2: Feynman diagrams of low-energy Compton scattering off the nucleon

ward and backward spin polarizabilities [6]:

γ0 = −γE1E1− γM1M1− γE1M2− γM1E2 = (−1.0±0.08±0.1)×10−4 fm4, (2)

γπ = −γE1E1 + γM1M1− γE1M2 + γM1E2 = (8.0±1.8)×10−4 fm4. (3)

Two more are soon to be measured at MAMI. We shall have a look here at observables relevant to
these measurements.

The polarizabilities arise in the context of low-energy structure of the nucleon. In the process
of Compton scattering off the proton γ p→ γ p they enter as coefficients in the low-energy expansion
(LEX) of the scattering amplitude. The Feynman diagrams of the process are shown in Fig. 2. Here
graphs 2a and 2b are the Born contributions, assuming that nucleon is a structureless object with
mass, electric charge and anomalous magnetic moment. Graph 2c is the non Born contribution,
and its leading order terms depend on 2 scalar and 4 spin polarizabilities.

Indeed, the scalar polarizabilities starts to contribute at second order in photon energy expan-
sion of the amplitude yielding the following effective Hamiltonian:

H(2)
e f f =−4π

[1
2

αE1~E2 +
1
2

βM1~H2
]
, (4)

where ~E and ~H are the electric and magnetic dipole fields.
In order to introduce scalar polarizabilities in a Lorentz-invariant fashion, we write down an

effective Lagrangian that yields the right Hamiltonian in the static limit, i.e.,

LNNγγ =
2π

M2 (∂αN)(∂β N)(αE1FαρFβ

ρ +βM1F̃αρ F̃β

ρ ) (5)

where Fµν = ∂[µAν ] is the electromagnetic field-strength tensor, F̃µν = εµνρσ ∂ ρAσ , N(x) is the

nucleon Dirac-spinor field. Recalling that F̃αρ F̃β

ρ =FαρFβ

ρ +
1
2 ηαβ F2, F2 =−2(F0i)2+(F i j)2 =

−2E2 +2B2, and assuming the nucleon rest frame: ∂iN = 0, ∂0N =−iMN, ∂0N = iMN we obtain

LNNγγ = 2π
{

βM1(B2−E2)+(αE1 +βM1)E2}NN,

which readily reproduces the well known nonrelativistic Hamiltonian: 4π(− 1
2 αE1E2− 1

2 βM1B2).
The Lagrangian in Eq. (5) can also be rewritten as

LNNγγ = πβM1NNF2 (6)

− 2π(αE1 +βM1)

M2 (∂αN)(∂β N)FαµFβν
ηµν

3
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Proton polarizabilities from polarized Compton scattering: low-energy expansion

which yields the following Feynman amplitude

M µν

NB ε
′
µεν = 4π u(p′)u(p)

[
βM1(q ·q′ ε ′ · ε−q · ε ′ q′ · ε)

− αE1 +βM1

2M2 (p′α pβ + pα p′
β
)(q′αε

′µ −q′µε
′α)(qβ

εµ −qµε
β )
]

= u(p′)u(p)
[
−A(NB)

1 (s, t)E ′ ·E +A(NB)
2 (s, t)q ·E ′ q′ ·E

]
, (7)

where p and q (p′ and q′) are the four-momenta of incident (outgoing) nucleon and photon, and the
manifestly gauge-invariant polarization vectors are

Eµ = εµ −
(p′+ p) · ε
(p′+ p) ·q

qµ , E ′µ = ε
′
µ −

(p′+ p) · ε ′

(p′+ p) ·q
q′µ . (8)

The polarizability contribution to the invariant Compton amplitudes is thus given as follows:

A(NB)
1 (s, t) = 2π(αE1 +βM1)(ν

2 +ν
′2)+2πβM1t , (9a)

A(NB)
2 (s, t) = −4πβM1−π(αE1 +βM1) t/(2M2). (9b)

We note that the contribution of αE1 +βM1 differs from conventional definitions by terms of
higher order in the Mandelstam variable t, and, hence in energy. For instance, the difference of the
present A(NB)

1 with the one in Ref. [1] is equal to −(π/M2)(αE1 +βM1) t(ω2− 1
4 t).

The last ingredient one needs to obtain the cross section is the proportionality factor between
the matrix element squared and the cross section:

4πα2

(s−M2)2 dt. (10)

This factor can also be expressed in terms of the solid angle ΩL by using dt = (ν ′2/π)dΩL,
where ν ′ is the outgoing photon energy.

The previous measurements of the scalar polarizabilities of nucleons were done in unpolarized
Compton scattering experiments. The non-Born (NB) part of the unpolarized differential cross
section for Compton scattering off a target with mass M and charge Ze is given by [8]:

dσ (NB)

dΩL
= −Z2αem

M

(
ν ′

ν

)2

νν
′[

αE1
(
1+ cos2

θL
)

+ 2βM1 cosθL
]
+O(ν4), (11)

where ν = (s−M2)/2M and ν ′ = (−u+M2)/2M are, respectively, the energies of the incident and
scattered photon in the laboratory frame, θL (dΩL = 2π sinθLdθL) is the scattering (solid) angle;
s, u, and t = 2M(ν ′− ν) are the Mandelstam variables; and αem = e2/4π is the fine-structure
constant. Hence, given the exactly known Born contribution [9] and the experimental angular
distribution at very low energy, one could in principle extract the polarizabilities with a negligible
model dependence. In reality, however, in order to resolve the small polarizability effect in the tiny
Compton cross sections, most of the measurements are done at energies exceeding 100 MeV, i.e.,
not small compared to the pion mass mπ . It is mπ , the onset of the pion-production branch cut, that
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Proton polarizabilities from polarized Compton scattering: low-energy expansion

severely limits the applicability of a polynomial expansion in energy such as LEX. At the energies
around the pion-production threshold one obtains a very substantial sensitivity to polarizabilities
but needs to resort to a model-dependent approach in order to extract them (see [6, 10] for reviews).

The magnetic polarizability βM1 seems to be affected the most: the central value of the baryon
chiral perturbation theory (BChPT) calculation is a factor of 1.5 larger than the PDG value. This is
attributed to the dominance of αE1 in the unpolarized cross section. Thus it is desirable to find an
observable sensitive to βM1 alone, such that the latter could be determined independently of αE1.

Having this in mind, we found that the beam asymmetry could be such an observable. It is
defined as

Σ3 ≡
dσ||−dσ⊥

dσ||+dσ⊥
, (12)

where dσ|| and dσ⊥ are cross sections for photons polarized parallel and perpendicular to the
scattering plane respectively.

Applying the LEX for the beam asymmetry we arrive at the following result for the proton
(Z = 1):

Σ3 = Σ
(B)
3 −

4Mω2 cosθ sin2
θ

αem(1+ cos2 θ)2 βM1 +O(ω4), (13)

where Σ
(B)
3 is the exact Born contribution, while

ω =
s−M2 + 1

2 t√
4M2− t

, θ = arccos
(

1+
t

2ω2

)
(14)

are the photon energy and scattering angle in the Breit (brick-wall) reference frame. In fact, to this
order in the LEX the formula is valid for ω and θ being the energy and angle in the laboratory or
center-of-mass frame.

Equation (13) shows that the leading (in LEX) effect of the electric polarizability cancels out,
while the magnetic polarizability remains. Hence, our first claim is that a low-energy measurement
of Σ3 can in principle be used to extract βM1 independently of αE1.

However, the low-energy Compton experiments on the proton are difficult because of small
cross sections and overwhelming QED backgrounds. Precision measurement only becomes feasi-
ble for photon-beam energies above 60 MeV and scattering angles greater than 40 degrees. Thus
the experiments at MAMI are being carried at photon energies between 80 and 150 MeV. Since
at these energies the effect of higher-order terms may become substantial one has to check the ap-
plicability of the leading LEX result. One way to do that is to compare the LEX result with the
dispersion-relation calculations or calculations based on chiral perturbation theory.

Figures 3 and 4 demonstrate such a comparison of the leading-LEX result to the next-next-
to-leading order (NNLO) BChPT result of Ref. [11] for the beam asymmetry defined in Eq. (12).
The observable is plotted for the case of proton Compton scattering as a function of magnetic
polarizability of the proton. From Fig. 3 one sees that for the beam energy of 100 MeV the LEX is
in a good agreement with the BChPT result for the forward directions (left panel).

As expected we observe a significant sensitivity of Σ3 to βM1. Also, Fig. 3 shows that the
beam asymmetry is large and, given the fact that many systematic errors tend to cancel out in
this observable, the required accuracy to discriminate between the PDG and ChPT values for the
magnetic polarizability should be much easier to achieve. Still, very high-intensity photon beams
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Figure 3: Beam asymmetry Σ3 shown as function of βM1 for fixed photon energy of 100 MeV and scattering
angles of 60 (left panels) and 120 (right panels) degrees. The curves are as follows: dashed green — Born
contribution; dash-dotted magenta — the leading LEX formula Eq. (13); red solid — NNLO BChPT [11].
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Figure 4: The same as in the previous figure but for photon beam energy of 135 MeV.

would be required to achieve the statistics necessary to pin down the magnetic polarizability model-
independently to the accuracy currently claimed by the PDG, c.f. Eq. (1b). The high-intensity
electron facility MESA being constructed in Mainz is very promising in this respect, as it will
allow for precision measurement of (quasi-) real Compton scattering.

The results for the beam energy of 135 MeV (Fig. 4) show that the leading LEX result does
not apply at such energies.

We next turn to the spin structure of the nucleon. It starts to show up at third order in photon
energy in the expansion of Compton amplitude, yielding the following effective Hamiltonian [7]:

H(3)
e f f =−4π

[1
2

γE1E1~σ · (~E× ~̇E)+
1
2

γM1M1~σ · (~H× ~̇H) (15)

−γM1E2Ei jσiH j + γE1M2Hi jσiE j

]
,

here ~̇E = ∂t~E, ~̇H = ∂t~H, Ei j =
1
2(∇iE j+∇ jEi), Hi j =

1
2(∇iH j+∇ jHi). Four constants γE1E1, γM1M1, γE1M2

6
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Proton polarizabilities from polarized Compton scattering: low-energy expansion

and γM1E2 denote the spin polarizabilities.
Their contribution to the third order can be seen explicitly in the matrix-element in the Breit

frame, that is given by

Tσ ′λ ′,σλ = ε
′ · ε A1(ω,θ)+ ε

′ · q̂ε
′ · q̂′A2(ω,θ) (16)

+ iσ · (ε ′× ε)A3(ω,θ)+ iσ · (q̂′× q̂)ε
′ · ε A4(ω,θ)

+ [iσ · (ε ′× q̂)ε · q̂′− iσ · (ε× q̂′)ε
′ · q̂]A5(ω,θ)

+ [iσ · (ε ′× q̂′)ε · q̂′− iσ · (ε× q̂)ε
′ · q̂]A6(ω,θ)

where q and ε (q′ and ε ′) are momentum and polarization vector of the incoming (outgoing) photon,
hats indicate unit vectors, ω and θ are its energy and scattering angle in the Breit frame; A1−A6

functions are invariant amplitudes with the LEX expansion given by

A1 = −Z2 +
1
4
[
(Z +κ)2(1+ z)−Z2](1− z)ω

2 +4π(αE1 +βM1z)ω
2 +O(ω4),

A2 =
1
4

κ z(2Z +κ)ω
2−4πβM1ω

2 +O(ω4),

A3 =
1
2
[
Z(Z +2κ)− (Z +κ)2 z

]
ω−4π ω

3 [γE1E1 + γE1M2 + z(γM1E2 + γM1M1)]+O(ω4),

A4 = −1
2
(Z +κ)2

ω−4π ω
3 (γM1M1− γM1E2)+O(ω4),

A5 =
1
2
(Z +κ)2

ω +4π ω
3

γM1M1 +O(ω4),

A6 = −1
2

Z(Z +κ)ω +4π ω
3

γE1M2 +O(ω4). (17)

Here z = cosθ , Ze and κ are the charge and anomalous magnetic moment of the nucleon.
Knowledge of the helicity amplitudes of Eq. (16) allows one to construct various observables

and study their sensitivity to spin polarizabilities. Two observables turn out to be of particular
interest for determination of spin polarizabilities: the beam target asymmetries with circularly-
polarized photons and longitudinally (transversely) polarized target, i.e. Σ2z (Σ2x). Applying the
LEX for the beam-target asymmetries, we obtain that the leading non-Born terms in the Breit frame
are:

Σ2x−Σ
(B)
2x =

sinθ ω3

(1+ z2)αem
{αE1[(1+κ)2− (1+2κ)z]

+
βM1

1+ z2 [κ +3(1+κ)2z−3(1+2κ)z2− (1+κ)2z3 +(1+κ)z4] (18a)

+ 2
[
γM1M1 + z(γE1E1 + γE1M2)+ z2

γM1E2
]
},

Σ2z−Σ
(B)
2z =

ω3

(1+ z2)αem
{αE1[−κ +2(1+κ)2z− (2+3κ)z2]

+
βM1

1+ z2 [−(1+κ)2 +(1−κ)z+6(1+κ)2z2−2(3+4κ)z3− (1+κ)2z4 +(1+κ)z5]

+ 2[(1+ z2)(γE1E1 + zγM1E2)+2z(γM1M1 + zγE1M2)]}. (18b)

7



P
o
S
(
B
o
r
m
i
o
2
0
1
4
)
0
2
7

Proton polarizabilities from polarized Compton scattering: low-energy expansion

0 50 100 150

-80

-60

-40

-20

0

Σ
2z

 (%
)

BChPT
Born+π°
LEX1
LEX2

0 50 100 150
-60

-40

-20

0

0 50 100 150
E
γ
 (MeV)

-60

-40

-20

0

Σ
2x

 (%
)

0 50 100 150
E
γ
 (MeV)

-80

-60

-40

-20

0

60° 90°

60° 90°

Figure 5: The beam-target asymmetries Σ2z (upper panel) and Σ2x (lower panel) as a function of incident
photon energy for scattering angle of 60 (left panel) and 90 (right panel) degrees. The curves are as follows:
dashed green — Born contribution; red solid — NNLO BChPT; dashed blue — the LEX with only invariant
amplitudes expanded; dash-dotted magenta — the leading LEX formulas Eqs. (18) with both the invariant
amplitudes and helicity amplitudes expanded.

Unfortunately, the applicability of Eqs. (18) is very limited. Similarly to the case of the LEX for the
beam asymmetry, we define it by comparing the leading order LEX results of Eqs. (18) with results
obtained in BChPT. Figure 5 demonstrates such a comparison. Two LEX curves correspond to the
expansion of the invariant amplitudes (LEX2 curve) and additionally the expansion of the helicity
amplitudes (LEX1 curve given by Eqs. (18)). One sees that LEX and BChPT curves coincide only
for photon energy below 50 MeV, thereby defining the region of applicability. However, at these
low energies (below 50 MeV), one finds the leading order LEX in Eqs. (18) to be suppressed by ω3.
The sensitivity to spin polarizabilities becomes too small to allow one to extract them from current
experiments. Therefore, the spin polarizabilities are planned to be extracted at higher energies
(around the Delta resonance region), where the sensitivity of the observables becomes significant.
As discussed above, the LEX approach fails, and one has to resort to either dispersion relations or
ChPT approach.

To conclude, we claim that the beam asymmetry Σ3 should be used for accurate determination
of the magnetic polarizability βM1 from low-energy Compton scattering. While the cross sections
receive contributions from both the electric and magnetic polarizability, the effect of αE1 cancels
out from the asymmetry at leading order in the low-energy expansion. We have also studied the

8
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Proton polarizabilities from polarized Compton scattering: low-energy expansion

next-to-leading corrections and found them to be suppressed at the forward scattering angles [5].
A precise and model-independent determination of the proton βM1 is feasible through a precision
measurement of Σ3 at beam energies below 100 MeV and forward scattering angles. Furthermore,
when multiplied with the unpolarized cross section, Σ3 yields the polarized cross section difference,
which provides an exclusive access to the electric polarizability.

Besides the scalar polarizabilities, we have studied observables sensitive to spin polarizabili-
ties. The problem here is the small region of applicability of the LEX results, i.e. photon energy
below 50 MeV. At such energies the sensitivity of LEX results to spin polarizabilities becomes too
small to discriminate their effect from the Born contribution. In this case, one has to resort to either
ChPT or dispersion relation approaches. Both work at higher energy regimes, and the fact that
sensitivity to spin polarizabilities increases increasing the energy, suggests an idea to extract them
around the Delta resonance region, where the sensitivity becomes substantial. Nevertheless, we
obtained the LEX expressions for the non-Born leading order terms of beam-target asymmetries
Σ2z and Σ2x, cf. Eqs. (18). Although one cannot use these expressions for determination of the
spin polarizabilities, they could provide a low energy test for either the ChPT or dispersion relation
frameworks.

I would like to thank Vladimir Pascalutsa for advising me during this work, and to acknowl-
edge the support of the Graduate School DFG/GRK 1581 “Symmetry Breaking in Fundamental
Interactions".
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