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A remarkable quantitative consistency is shown between three manifestations of pairing: 1) the 

even-odd mass differences; 2) the rotational moments of inertia; 3) the low energy level 

densities.  The gap parameter extracted from rotational states nicely agrees with that obtained 

from even-odd mass differences.  The natural log of experimental nuclear level densities at low 

energy is linear with energy.  This can be interpreted in terms of a nearly 1
st
 order phase 

transition from a superfluid to an ideal gas of quasi particles.  The transition temperature 

coincides with the BCS critical temperature and yields gap parameters in good agreement with 

the values extracted from even-odd mass differences from rotational states.  This converging 

evidence greatly supports the application of the BCS theory to atomic nuclei.  
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1. Introduction: The anomalous quasiparticle spectrum  

It is well known that the excitation spectrum with a “macroscopic” gap near the ground 

state is responsible for superfluid and superconducting states in bosonic and fermionic systems, 

respectively. 

In nuclei, the pairing Hamiltonian produces just this kind of spectrum, as shown in fig.(1) 

where the paired quasi particle spectrum is compared with the unpaired particle/hole spectrum. 

 

 

 

Fig.(1)  
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1.1 Even-odd Mass differences 

The first manifestation of this gap is the even-odd mass difference: even-even, odd-A and 

odd-odd nuclei in their ground state have 0,1,2 quasi-particles and differ in mass by one quasi 

particle energy which is approximately ∆.  This is illustrated in fig.(1).  

This feature is well known and reproduced in the mass formula by the term  

∆≈δ≈12/A1/2  
MeV. . 

 

1.1.1 The Anomalous Moments of Inertia in Rotational Nuclei 

Another manifestation of the pairing correlation in nuclei is the superfluid behaviour of 

rotational moments of inertia, which are about 60% of their expected rigid value. These 

moments  of  inertia  can  be  related  to  the  gap  parameter  ∆.    An  approximate  closed  form 
expression has been given by Bengtsson and Hegelsson

1
 

 

2
3

2
)

11

1
(

x
rig �

� �  

 

where ' 2/0ZH!x ,  ε  is  the  quadrupole  deformation  and  0Z!  is the single particle 

harmonic oscillator phonon energy. 

Such an equation allows one to extract ∆ from the moments of inertia, which, in turn can 

be extracted from the rotational spectra.  This has been done by A. Macchiavelli 
2
 who has 

kindly provided fig. (2).  
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Fig.(2): Gap parameters extracted from the 2

+
 states of even-even nuclei.  The line 

represents the liquid drop values for the even-odd mass differences. 

 

In this figure the moments of inertia, inferred for the 2
+
 states of all even-even nuclei have 

been converted into the gap parameter ∆ and compared with the even-odd mass difference 

21
12

A
#G . 

The observed remarkable agreement is most important because it shows the consistency of 

two very different aspects of pairing: the overall pairing correlation in the ground state, and the 

intrinsic quasi particle excitation of the even-odd mass differences.  

 

 

1.1.2 Level Density with Pairing 

The presence of pairing in nuclei away from closed shells dominates the low energy level 

density and its energy dependence.  For the uniform model in the case of an even even nucleus, 

the ground state is shifted downward by an amount  

 



P
o
S
(
B
o
r
m
i
o
2
0
1
4
)
0
6
5

P
o
S
(
B
o
r
m
i
o
 
2
0
1
4
)
0
6
5

 

 
¤ Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike Licence. http://pos.sissa.it 

 

2

0.
2

1
' gEcond  ,  

 

where 0' is the ground state gap parameter and g is the doubly degenerate single particle level 

density, which is related to the single particle level density  parameter a  according to  

ga
3

2S
 . As the temperature increases, quasi particle excitations are produced until their 

blocking effect leads to a decrease and eventual breakdown of the pairing correlation at the 

critical temperature 
5.3

2 0' crT .   

 

At this temperature the nucleus reverts to a non interacting Fermi gas with its ground 

state shifted by an amount equal to the condensation energy.  

Therefore, at Tcr the excitation energy is   

 

)
)52.3(3

8
1(

2

1

32

1
2

2
2

0

2
2

2

0

SS
�' �' ggTgE crcr . 

 

We can also evaluate the mean number of quasi particles Qcr at the critical point
3
 

 

2ln4 crcr gTQ  . 

 

We can now calculate the mean energy cost per quasi particle:   

 

00
2ln16

52.3
'#'#

S

cr

cr

Q

E
. 

 

This result is remarkable : it indicates that, if we consider the excitation energy as the 

indipendent variable, the energy cost per quasi particle is constant and the transition is “nearly” 
1

st
 order.   This is in contrast with what one observes when the temperature is used as the 

independent variable, when a distinct 2
nd

 order phase transition is visible.  We can also calculate  

the entropy at the critical point:  

crcr gTS
3

2
2S

  

and the entropy per quasi particle: 
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374.2
2ln6

2

  
S

cr

cr

Q

S
 

 

again, temperature independent. 

 

Correcing for the BCS discontinuity in the specific heat of a factor 2.43 

 

92.143.2ln
2

1
374.2

'

 � 
Cr

Cr

Q

S
 

 

Alternatively  

 

75.1
2

54.3'

 
'
'

  
CrCr

Cr

T

QE

Q

S
 

in excellent agreement. 

 

The number of the states associated with each quasi particle is then approximately constant and 

given by  

8.6
'

  QSeN . 

 

Given that this transition is “nearly” 1st
 order, we infer that the level density should be “nearly” 

exponential:  

T

E
E exp)( |U  

 

where T should be “about” Tcr.   

 

This low energy “linear” dependence of lnρ with energy has been observed widely over 

the nuclear chart.  In fact, long ago Gilbert and Cameron
4
, on the basis of much scantier 

experimental evidence and theoretical understanding, introduced a hybrid level density formula 

by matching a low energy linear dependence and a higher energy Fermi gas dependence .  

Despite the lack of theoretical justification, their model found great favor with astrophysicsts 

and reactor people in need of low energy level densities for their simulations.  Using the present 

day available low energy temperatures determined with the Gilbert and Cameron recipe, it is 

possible to extract the gap parameter ∆0 from the BCS equation  
5.3

2 0' crT . 
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In fig.(3) the extracted ∆0 is plotted as a function of A and compared with the 

“canonical” value 
2

10

12

A
 '  that reproduces the even-odd mass differences.   

 

 
Fig.(3) Gap parameters extracted from the level density slopes compared with the even-odd 

mass differences. 

 

 

We notice that the value of ∆ extracted from the temperatures agrees in magnitude and in A 

dependence with the even-odd mass differences.  Deviations appear, as expected, near the magic 

regions, where the shell effects dominate and quench the pairing correlation.  

However, somewhat unexpectedly, the linearity of lnρ with E is also observed at low energy 

near the magic regions, so for these regions the cause of the linear behaviour must be looked for 

elsewhere.  
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1.1.3 Spectra with any gap 

As discussed above, the origin of the linear dependence is due to the constant energy cost 

for the production of a quasi particle and a constant entropy per quasi particle.  A similar 

situation occurs for a magic system with a gap in the single particle spectrum.  Here, the cost to 

promote a nucleon and thus create a quasi particle ( particle, hole excitation) is constant, at least 

for a while.  This can be illustrated with a simple model.  

Let excitations ( quasi particles) be created into a state of degeneracy N at the cost δ per 
excitation.   

The excitation energy is:  

GnE   

and the associated number of states Ω is 
nN#:  

for n<<N. 

 

It follows that  

T

E
N

E
NnS    lnln

G
 

  

where 
N

T
ln

G
  and 

T

E
E exp)(  U . 

 

Thus an exponential spectrum is expected if a gap is present irrespective of its origin.  

 

1.1.4 Consistency between “Pairing gap” and “any gap” 

The entropy per quasi particle in the pairing model is: 

 

75.1 
'

 
Crcr

cr

TQ

S
 

For the “any gap” model we have: 

N
n

S
ln 

w
w

 

Let us put pairing ∆ into δ and equate T with Tcr :  

 

5.3

2

ln

'
 

'
 

N
T . 

 

From this we obtain: lnN=1.75 or N=5.6 in perfect agreement with the previous estimates. 
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1.1.5 Even-Odd effects in level densities 

In the pairing picture, an odd nucleus possesses one quasi particle in its ground state, 

which should control the level density at low energy.  Otherwise, the odd-A nucleus should look 

like an even-even one except for an energy shift which should corresponds to the even-odd mass 

difference ∆.  A simple check for this is to verify that the level densities of two adjacent nuclei 

overlap if an horizontal shift ∆ is applied to the odd nucleus. According to the considerations 

made above, this shift ∆ can be related to the level density slope by the expression  

 

52.3

2
exp

'
 # crTT  

 

The next check can be made by overlapping the two level densities by means of a vertical shift.  

This vertical shift ∆S should be compared with the entropy per quasi particle  75.1
'
#

Q

S
. 

1.1.6  Conclusion  

The different manifestations of pairing, the even-odd mass differences, the superfluids 

moments of inertia, and the low energy level densities are quantitatively consistent with the 

B.C.S. pairing theory.  

In particular, the low energy level densities ad their energy dependence find their origin and 

explanation in terms of equal energy cost per quasi particle which carry a constant amount of 

entropy.  The even-odd differences in the level densities, also find a natural explanation within 

this framework. 

These phenomena associated with the pairing gap can be generalized to any gap arising, for 

instance, from shell structures.  
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