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The next generation Ring Imaging Cherenkov (RICH) detectors for particle ID applications, at
CERN, PANDA, and others place stringent requirements on photon detectors, with potentially
high magnetic fields unaligned with the detector’s optical axis, high event rates challenging de-
tector lifetime, high density multi-anode readout and a high time resolution requirement typically
less than 50 ps.
We are undertaking an R&D project for the TORCH collaboration, a proposed LHCb upgrade,
to develop a novel multi-anode Microchannel Plate detector, with 128× 8 effective pixels in a
5.3× 5.3 cm2 active area each with 50 ps RMS timing resolution. The proposed design utilises
charge sharing across multiple readout anodes to i) improve spatial resolution beyond the defined
anode pitch, ii) provide a well-defined charge footprint for readout even in high magnetic fields
and iii) reduce the impact of manufacturing issues when producing high-density multi-anode
devices.
Simulations of this hybrid multi-anode detector will be presented, covering the expected charge
footprint on each readout anode and the impact of utilising charge sharing between anodes to
improve the detector’s spatial resolution. This includes simulating the impact of the TORCH
project current readout solution using the NINO amplifier/discriminator ASIC and the HPTDC, a
25 ps resolution time-to-digital converter.
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1. Introduction

We are undertaking an R&D project for the TORCH collaboration [1] to develop a novel
multi-anode Microchannel Plate detector. TORCH (Time Of internally Reflected CHerenkov light)
is a proposed ring imaging cherenkov detector to improve LHCb’s particle ID capabilities, pro-
viding improved π/K separation in the low momentum regime up to 10GeV/c. TORCH utilises
a thin plane of quartz Cherenkov radiator located approximately 10 m from the LHCb interaction
point (requiring 10–15 ps timing resolution per particle for 3σ π/K separation). The generated
Cherenkov photons propagate to top/bottom of the radiator plane where they are focussed on to a
bank of pixelated photon detectors using a quartz focussing block. Timing of the photon arrival
at the photodetector bank, combined with the photon detector pixelation allows reconstruction of
the cherenkov cone angle, the π/K interaction point within the radiator plane and correction for
chromatic dispersion of the cherenkov photons. Assuming on average 30 photons are produced
per particle track, the required time resolution per photon is approximately 70 ps [2] to achieve
10–15 ps particle TOF resolution; of this the photon detector must account for no more than 50 ps
RMS.

Hence, to achieve the desired TOF resolution a multi-anode Microchannel Plate photomulti-
plier (MCP-PMT) is the chosen solution as it provides excellent single photon timing resolution
(<30 ps achievable [3]) and excellent spatial resolution. To achieve the required cherenkov photon
angle reconstruction the MCP-PMT must achieve a spatial resolution equivalent to 128×8 pixels
in a 5.3×5.3 cm2 active area.

In addition to this the expected photon rate for the TORCH detector is exceptionally large at
36 MHz cm−2. This requirement means the MCP-PMT must have a highly parallel readout due to
high occupancy and has dramatic impact on the photon detector’s lifetime. Previous work [4, 5]
has addressed the lifetime requirement using Atomic Layer Deposition to coat the MCP, reducing
ageing of the detector photocathode.

To address the spatial resolution and detector occupancy requirements, a novel multi-anode
readout structure has been proposed that utilises charge sharing across multiple readout anodes
leading to (i) improved spatial resolution above the physical readout anode pitch, (ii) reduced num-
ber of electronic readout channels required, (iii) a well-defined charge footprint on readout anode
even in high magnetic fields, and (iv) reduce likelihood of vacuum leaks from a high pixel density
multi-anode device.

2. MCP Readout Anode Design

Traditional multi-anode MCP-PMTs use vacuum feed throughs at the rear of the detector for
collecting the electron avalanche from the MCP output and coupling the signal to readout electron-
ics. For a high pixel density device this introduces a significant probability of a vacuum leak to
occuring manufacturing. Also, direct connection to readout electronics mandates that the anode be
held at ground, meaning the photocathode at the front of the detector is at high voltage (3–5 kV)
complicating coupling the photocathode window to the system of interest. By using a structured
multi-anode, the direct connection can be broken, allowing the anode to be at high voltage whilst
reducing the chance of leakage around the feed throughs. A structured anode also allows coupling

2



P
o
S
(
T
I
P
P
2
0
1
4
)
3
0
6

Simulation studies of a novel, charge sharing, multi-anode MCP detector Thomas M. Conneely

the MCP output charge to multiple readout anodes, with a well defined footprint, which can be
used to enhance the detector’s spatial resolution beyond the physical layout of the readout pads.

The charge sharing technique requires a charge measurement at each of the anode’s readout
pad. The photon’s position Xγ can then be calculated from

Xγ =
n

∑
i=0

xi
qi

Q
(2.1)

where xi is the spatial co-ordinate of a readout pad in one dimension, qi is the charge collected by
that pad and Q is the total charge collected. At the high rate, multiple events are likely to occur
near simultaneously on each detector so clusters of neighbouring pads that have fired need to be
identified and other pads firing rejected from the total charge sum.

The detector in development for TORCH uses a structured 8×64 structured multi-anode read-
out, chosen to meet detector occupancy requirements, which at 36 MHz cm−2 means no more than
three neighbouring readout pads can be used for the charge sharing calculation. This simulation
was performed to (i) optimise the structured multi-anode geometry, tuning the charge sharing foot-
print to maximise position resolution and meet occupancy requirements, (ii) investigate the impact
of detector gain, and broad pulse height distribution of to the MCP gain process, and (iii) investi-
gate the impact of electronic noise, timing jitter and threshold on position resolution and detector
efficiency.

To meet the need for high rate, high time resolution readout with charge measurement, the
NINO Time-Over-Threshold (TOT) amplifier/discriminator [6] is currently the preferred choice, as
it provides a time resolution < 10 ps at rates in excess of 10 MHz. The TOT technique also encodes
the charge collected in the width of the NINO’s output, however this is significantly non-linear.
The NINO output pulse width and leading edge time will be digitised using the HPTDC ASIC [7],
a high resolution time to digital converter with timing resolution down to 25 ps.

3. Detector Modelling

The first stage of the simulation was to model the response of the structured anode to the
charge output of the MCP. This was performed in Ansys Maxwell, by producing a 3D model of
the detector/anode structure and placing a test charge on the surface of the anode to represent the
collected charge from the MCP. The capacitive coupling from the test charge at a position (x,y)
to each element was solved for. This allows the fraction of charge collected by each readout pad
for a photon at the position (x,y) to be calculated. By moving the test charge across the anode
surface, a map of charge collected by each readout pad can be built up. To fill the gaps between test
charge positions actually calculated, a B-spline curve was fitted and used to interpolate between
data points.

This data was fed into a Monte Carlo model, which begins by modelling the MCP’s current
output pulse shape and gain followed by a simulation of the electronics response for photon po-
sitions generated with a uniform random distribution. For each photon, an MCP gain value was
generated from a distribution fitted to a measured MCP pulse height distribution (with identical
pore size). Then using the results of the Ansys Maxwell modelling, the charge collected by each
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Virtual Pixel Size = 0.41 mm

Physical Pad Size = 0.83 mm

Figure 1: Simulated position error, for 106 electron gain and 50 fC NINO threshold.

readout pad was calculated. For each readout pad a current pulse was modelled using an analytical
function

I(t) =−Ae
(t−t0)

2

σ(t)2 (3.1a)

σ(t) =
2σ0

1+ ea(t−t0)
(3.1b)

fitted to a real detector pulse where A is the pulse amplitude (normalised so the pulse area is
equal to the generated charge collected on each readout pad), t0 is the pulse peaking time, σ0 is the
pulse’s FWHM and a detemines the asymmetry of the pulse’s lead time/fall time1.

The generated detector pulse for each readout pad was passed through a model of the elec-
tronics readout. This modelled the amplifier as a low-pass filter with 1 ns rise time and measured
the pulse’s TOT, to produce an output matched against calibration data from a sample 32 channel
NINO. The leading edge time/pulse width was measured and digitised into 25 ps bins to simulate
the HPTDC timing format and dynamic range.

The simulated NINO’s output pulse width was converted to signal charge using a previously
generated charge calibration lookup table and the simulated charge for each readout pad fed into
Equation 2.1 to calculate the simulated photon position. Hence, by subtracting the initial generated
photon’s positions from the simulated position, the spatial resolution can be studied. The detector
occupancy can be studied as the charge collected by each readout anode is known.

4. Simulation Results

The TORCH MCP-PMT must achieve a spatial resolution equivalent to 128× 8 pixels in a
5.3× 5.3 cm2 active area, equivalent to a pixel pitch of 0.414 mm in the fine direction. Hence
the charge sharing resolution of the 64× 8 layout, with a pitch of 0.828 mm, must exceed this
value. Figure 1 shows a typical position error distribution (generated photon position subtracted
from simulated photon position), with two main contributions (i) a large central peak where more
than one pad collected charge above threshold allowing a full charge sharing calculation (ii) broad
tails where a single pad fired, hence no charge sharing calculation could be performed. In this
case the mean number of pads above threshold per event is 1.36, meaning there is a significant

1Values used in the simulation were σ0 = 0.220ns, a =−3.768 and t0 = 0ns
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(a) Standard deviation of position error as
function of NINO threshold and detector
gain.
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Figure 2

contribution from single pad events. The position resolution is taken to be the standard deviation
of this distribution, which in Figure 1 is 0.19 mm. Hence, a 0.76 mm equivalent pixel can be
reconstructed with a 2σ confidence level.

This position error was simulated by varying the detector gain and NINO threshold; these are
the critical factors in determining SNR due to the low gains required for the high rate operation.
Figure 2a shows the simulated position error standard deviation varying these two parameters,
indicating for efficient charge sharing resolution a gain > 106 is required.

To study detector occupancy, the number of readout pads with events above the NINO thresh-
hold was used as a metric, at 36 MHz cm−2 this was required to be <3 for each event. As shown in
Figure 2b, this criteria is comfortably met for all gains. Both of these plots were used to optimise
the MCP-PMT’s anode structure, as there is a tradeoff in the charge sharing measurement, espe-
cially at low gains. This occurs since the charge collected by each individual pad is reduced when
charge sharing between pads is increased (i.e. the charge is spread over a larger area). Hence the
SNR for each pads charge measurement is increased.

5. Conclusion

The results of simulating a novel type of multi-anode MCP-PMT designed for the TORCH
project are presented, using charge sharing techniques to improve spatital resolution and provide
additional benefits for manufacturing and operation. The simulations show the anode design meets
the stringent rate requirements, and desired 0.83 mm spatial resolution for the TORCH project.
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