
P
o
S
(
T
I
P
P
2
0
1
4
)
4
0
8

GPGPU for triggering in High Energy Physics
Experiments

S.Amerio1, M.Belgiovine2, R.Di Sipio2, A.Gabrielli2, A.Gianelle1, D.Lucchesi 1,
M.Negrini3, L.Rinaldi1∗, F. Semeria3, A.Sidoti3, M.Villa2

1) Padova University and INFN, 2) Bologna University and INFN, 3) INFN-Bologna
E-mail: rinaldi@bo.infn.it, belgiovi@bo.infn.it

Graphical Processing Units (GPUs) provide exceptional massive parallel computing power with
small power consumption. General Purpose Computing on GPU (GPGPU) brings high perfor-
mance computing with off-the-shelf products. However the full exploitation of this new comput-
ing paradigm will not be possible if software applications only partially employ massive paral-
lelism. High Energy Physics (HEP) experiments have much to gain adopting this new computing
paradigm. The expected gain in performance in reducing the application latency and dealing with
the data high throughput increase, will allow to employ systems based on GPGPU for data acqui-
sition, increasing the available computing power with smaller electric power consumption. All
these features suggest the application of GPGPU at the trigger level to provide fast decision and
high rejection power. In view of possible applications in a trigger system we will show, using re-
alistic examples based on HEP experiments, the improvement in performance on HEP computing
applications after tuning and optimization for running on GPUs. The methodology to improve the
performance will also be shown together with results using different GPU architectures. Tracking
in the bustling LHC environment is very challenging with multiple minimum bias interactions
superimposed to the high transferred momentum one. In particular the porting to GPU architec-
ture of two track reconstruction algorithms will be shown: track fitting with the SVT algorithm
and track recognition with the Hough Transform. Both pattern recognition and track fitting would
benefit from massive parallelism with high throughput processing that can be fully exploited at
trigger level.

Technology and Instrumentation in Particle Physics 2014,
2-6 June, 2014
Amsterdam, the Netherlands

∗Speaker.

c© Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike Licence. http://pos.sissa.it/

mailto:rinaldi@bo.infn.it, belgiovi@bo.infn.it


P
o
S
(
T
I
P
P
2
0
1
4
)
4
0
8

GPU for triggering in High Energy Physics Experiments L.Rinaldi1

1. Introduction

Most of the High Energy Physics (HEP) experiments, designed to detect large amount of
physics events produced with a very high rate, can profit from the development of new com-
puting paradigms for fast data-processing mainly based on massive parallelisation. Such intense
computing power can be provided by General Purpose Computing on Graphical Processing Units
(GPGPU) [1]. In this paper we discuss two typical use-cases where a parallel approach is expected
to reduce the execution time: a trigger model based on track fitting and a track pattern recognition
algorithm based on the Hough transform.

2. Track fitting at trigger level

This track fitting model is based on the CDF Silicon Vertex Trigger (SVT) [2]. SVT performed
online trigger decisions in about 20 µs using a 2-steps algorithm: a pattern recognition to identify
low resolution tracks (called roads) performed by Associative Memory chips and a linear track fit-
ting with a scalar product on all hits combinations inside each road. The second step is suitable for
parallelisation: after unpacking the input data (24-bit words) containing the hits and the associated
roads, all the possible combinations of hits are computed for each event and for each road. Then,
for each combination, the fit constants are retrieved from the device memory and a scalar product
with the hits coordinates is performed and the output tracks are returned. The second step has been
ported into the CUDA programming language [3]; first the data are unpacked in parallel, then the
data structures used to process the input event data are setup on the GPU memory, depending on
the chosen payload size, and for each iteration two functions are executed: the first one determines
the number of hits combination of possible tracks in each event and the second one performs the
fit of track combinations. Each CUDA-threadblock, at local problem scope, is assigned to a single
event workload (e.g. for finding the number of combinations in each road of the event and for
fitting each combination for every roads in the event), while at global scope, the total execution is
divided in subtasks in terms of number of events to be processed (e.g. for a 100 events payload,
100 CUDA-threadblocks are executed).

A first study on the SVT algorithm porting and the comparison to CPU performance are de-
scribed in [4]. The algorithm timing has been improved using shared memory (on-chip) for shared
data within the same CUDA-threadblocks, allowing faster memory accesses inside the CUDA-
kernel, and allocating data with CUDA-pinned memory for faster transfers between CPU and GPU.
Also, four asynchronous CUDA-streams have been used to queue every iteration relative to a sin-
gle payload, in order to gain a higher parallelism level (e.g. mem. transfers/execution overlapping;
addressing iterations on multiple GPUs).

The test has been executed on different devices, like the new NVIDIA k40m [5] (devices
details are reported in Table 1), using a dataset of 9000 simulated events. The test results are shown
in Figures 1 and 2. The total execution time increases for large event payload (more than 30 events
processed together). The event complexity affects the performance for low numbers of tracks.
In general, the total execution time is dependent on the device, with a time reduction for the latest
GPU boards and faster bus connections, as observed when the pure computation and host-to-device
data transfer timing are measured separately (Fig 2).

2



P
o
S
(
T
I
P
P
2
0
1
4
)
4
0
8

GPU for triggering in High Energy Physics Experiments L.Rinaldi1

Device NVIDIA NVIDIA NVIDIA NVIDIA
specification Quadro 600FX GeForce GTX770 Tesla K20m Tesla K40m
Performance (Gflops) 354 3213 3542 4291
Mem. Bandwidth (GB/s) 25.6 224.2 208 288
Bus Connection PCIe2 PCIe3 PCIe2 InfiniBand
Mem. Size (MB) 1024 2048 5120 12228
Number of Cores 96 1536 2496 2880
Clock Speed (MHz) 350 1046 706 1502

Table 1: Computing resources setup

Total Number of Tracks

0 5 10 15 20 25 30 35 40

E
x
e

c
u

ti
o

n
 T

im
e

 (
m

s
)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
Payload: 1 Event

Total Number of Tracks

0 5 10 15 20 25 30 35 40

E
x
e

c
u

ti
o

n
 T

im
e

 (
m

s
)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
Payload: 4 Events

Total Number of Tracks

0 5 10 15 20 25 30 35 40

E
x
e

c
u

ti
o

n
 T

im
e

 (
m

s
)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
Payload: 8 Events

Total Number of Tracks

0 20 40 60 80 100

E
x
e

c
u

ti
o

n
 T

im
e

 (
m

s
)

0

1

2

3

4

5

6

7

8

9

10
Payload: 32 Events

Quadro 600FX

GeForce GTX770

Tesla K20m

Tesla K40m

Total Number of Tracks

0 20 40 60 80 100

E
x
e

c
u

ti
o

n
 T

im
e

 (
m

s
)

0

1

2

3

4

5

6

7

8

9

10
Payload: 64 Events

Total Number of Tracks

40 60 80 100 120 140

E
x
e

c
u

ti
o

n
 T

im
e

 (
m

s
)

0

1

2

3

4

5

6

7

8

9

10
Payload: 128 Events

Figure 1: Total execution time as a function of the number of tracks found by the algorithm, for different
event payloads and for several NVIDIA GPU boards

Log2(Nevents)

0 1 2 3 4 5 6 7

H
o
s
t 
<

>
 D

e
v
ic

e
 t
im

e
 (

m
s
)

1
10

1

Quadro 600FX

GeForce GTX770

Tesla K20m

Tesla K40m

Log2(Nevents)
0 1 2 3 4 5 6 7

C
o
m

p
u
ta

ti
o
n
 t
im

e
 (

m
s
)

1
10

1

Figure 2: Host-Device data transfer time (left) and pure computation time (right) as a function of the number
of processed events.

3. Track recognition using the Hough Transform

The Hough Transform [6, 7, 8] is a pattern recognition technique for feature extraction in im-
age processing. In our model, a typical cylindrical detector for inner tracking composed by 12
layers has been considered: the Hough Transform has been used for the extraction of the tracks
curvature from simulated tracking detector signals. The test has been carried out using a dataset
of 1000 simulated events, each containing up to 5000 hits. The timing measurements have been
performed as a function of the number of hits. A circle detection Hough algorithm has been devel-
oped, the Hough parameters being the curvature ρ and the track angle φ (constraining the tracks
to the nominal vertex). In addition, the algorithm performed the track searching in smaller sectors
along the longitudinal (θ ) and transverse (ϕ) regions. For the CUDA implementation, the Hough

3



P
o
S
(
T
I
P
P
2
0
1
4
)
4
0
8

GPU for triggering in High Energy Physics Experiments L.Rinaldi1

Number of hits

0 1000 2000 3000 4000 5000

T
o
ta

l 
e
x
e
c
u
ti
o

n
 T

im
e

 (
m

s
)

0

100

200

300

400

500

600

CPU intel i7

Quadro 600FX

GeForce GTX770

Tesla K20m

Tesla K40m

(a)

Number of hits

0 1000 2000 3000 4000 5000

C
o
m

p
u
ti
n

g
 T

im
e

 (
m

s
)

2
10

1
10

1

10

2
10

(b)

Number of hits

0 1000 2000 3000 4000 5000

C
o
m

p
u
ti
n

g
 T

im
e

 (
m

s
)

0

50

100

150

200

250

300

350
(c)

Number of hits

0 1000 2000 3000 4000 5000

D
a
ta

 T
ra

n
s
fe

r 
T

im
e

 (
m

s
)

0

5

10

15

20

25

30

35

40

45

50
(d)

Figure 3: Timings as a function of the number of hits: (a) total execution time, (b) voting procedure, (c)
relative maxima search, (d) host-to-device data transfer time (CPU time is the data input reading time).

matrices have been initialised at first iteration only; the parameter vote has been performed assign-
ing each hit to a block and the Hough parameters to the threads, using shared memory allocation
within each thread. Instead, for the local maxima search, longitudinal (16 bins) and transverse (4
bins) sectors form the CUDA-grid and the CUDA-threadblocks run over ρ (1024 bins) and φ (1024
bins), using the CUDA-pinned memory to speedup the the output transfer. The results of the test
are shown in Fig. 3: compared to a traditional CPU, the total execution time on GPUs is faster up
to a factor 15. For the voting procedure, the speed-up increases of two orders of magnitude. As
expected, the slower parts of the execution are the data transfer between host and device and the
local maxima search, because of an irreducible serial component. Also in this test, the execution
times show a remarkable dependence on the GPU devices and their bus connections to hosts.

4. Conclusions

Two algorithms for tracking reconstruction and track pattern recognition with the Hough trans-
form have been implemented on GPU devices. In both cases, a dramatic reduction of execution
time has been observed. The obtained timing performance are encouraging in view of a future use
at trigger level. Good performance have been obtained on pure computational algorithms, although
the execution time is driven mainly by data transfer between CPU and GPU and by the GPU board
specifications and bus connection, and therefore the best timing performance has been achieved
using the latest GPUs (NVIDIA k40m) and PCIe3 [9] bus.

References

[1] NVidia Corporation URL http://www.nvidia.com/object/gpu.html

[2] W A Ashmanskas et al, 2004 Nucl. Instrum. Methods Phys. Res., Sect. A 518 p 532

[3] NVidia Corporation URL http://www.nvidia.com/object/cuda_home_new.html

[4] S Amerio et al; 2014 J. Phys. Conf. Ser. 513 012002

[5] NVidia Corporation URL http://www.nvidia.com/

[6] P. Hough, Machine analysis of Bubble Chamber Pictures; 1959 Proc. Int. Conf. High Energy
Accelerators and Instrumentation C590914 554âĂŞ558
P. Hough, Method and mean for recognizing complex patterns, 1962, United States Patent 3069654.

[7] V Halyo et al; 2014 JINST 9 P04005

[8] M R Buckley, V Halyo, P Lujan; 2014 http://arxiv.org/abs/1405.2082

[9] PCI-SIG URL http://www.pcisig.com/specifications/pciexpress/base3/

4


