
P
o
S
(
L
A
T
T
I
C
E
2
0
1
4
)
0
0
3

Recent results on topology on the lattice
(in memory of Pierre van Baal)
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Memorizing Pierre van Baal we will shortly review his life and his scientific achievements.
Starting then with some basics in gauge field topology we mainly will discuss recent efforts in
determining the topological susceptibility in lattice QCD.

Pierre van Baal (Naarden, June 9, 1955 - Leiden, December 29,2013) was a great theoretician
many members of the lattice field theory community remember very well. He passed away much
too early. He was not a ‘latticist’ by himself, but strongly interested in what one can learn from
lattice theory about fundamental aspects of non-Abelian gauge theories like gluon and quark
confinement. There are several colleagues who were inspiredby his ideas and approaches. The
author of this contribution and some of his coauthors are grateful to belong to them.
Pierre started his career with the B.Sc. in Physics and Mathematics in Utrecht. Having received
his M.Sc. in 1980 he continued with the Ph.D. in Theoretical Physics at Utrecht University, where
his advisor was Gerard ‘t Hooft. After that in 1984 he moved toStony Brook first as a Research
Associate and then as a Fellow in the joint Math/Phys Program. From 1987 to 1989 he became
a Fellow at the CERN Theory Group. In 1989 he was appointed KNAW-Fellow by the Royal
Academy of Sciences at University of Utrecht, before he became a full professor in Field Theory
and Particle Physics at Instituut-Lorentz for TheoreticalPhysics of the University of Leiden in
1992. There he was not only a very motivated researcher but also an engaged teacher, even with
projects for school kids. We all liked him as a very nice, modest person and a good friend of many
of us. Having been attacked by a serious stroke just after returning from LATTICE ’05 in Dublin,
he found strong forces to recover and to reestablish his ability to talk, to travel and even to give
lectures. Unfortunately and tragically, his hope and efforts to come back to research work - as he
liked it so much - failed.†

But now we feel how much we all miss him.

The 32nd International Symposium on Lattice Field Theory
23-28 June, 2014
Columbia University New York, NY

∗Speaker.
† Pierre’s statement in his C.V. (see www.lorentz.leidenuniv.nl/research/vanbaal/DECEASED/HOME/cv.html)

describes the situation: "I had a stroke (bleeding in the head) on the evening of July 31, 2005. As a consequence of this
I have accepted that since December 1, 2007 I am demoted to 20% and April 1, 2010 to 10% of a professorship. I could
still teach (in a modified format), but since October 2008 I can not do it anymore. I can give seminars (twice as slow),
but doing research (something new) is too difficult."

c© Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike Licence. http://pos.sissa.it/
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Figure 1: Pierre van Baal, his field theory lectures book [15] and his work collected by G. ‘t Hooft and C.
Korthals Altes [16] celebrated at thePierrefestin June 2013.

1. Pierre van Baal’s scientific achievements

Pierre started his remarkable scientific career in theoretical physics by investigatingSU(N)

gauge fields on a torus in particular with twisted boundary conditions [1]. Then he came to his
“thoughts” on Gribov copies [2]. Searching for instantons from Monte Carlo generated lattice
gauge fields he participated in inventing over-improved cooling [3] which is still in use, as we shall
report later on. Thinking about improving lattice actions was a further lattice related matter of his
work [4]. His thorough study of multi-instanton solutions and Nahm’s transformation [5] about
which several papers appeared over the years [6] led him together withhis PhD student Thomas C.
Kraan and partly influenced by papers by Lee and Lu [7] to his probablymost interesting invention
with the strongest citation impact:periodic instantons (calorons) with nontrivial holonomy
[8, 9]. In the following years together with several young (and some senior) collaborators a series
of papers appeared establishing various properties of those caloronswhich we want to call in the
following KvBLL calorons[10, 11, 12]. Some reviews on KvBLL calorons and their relevance can
be found in his and also other’s talks [13, 14]. Pierre’s recommendable lectures on field theory
were published in [15]. His work has been nicely collected in [16] (see Fig. 1).

2. Topology, instantons, calorons - a 40 years old story

Let us first recall some basic facts. Classical as well as path-integral determined quantum
Euclidean Yang-Mills potentialsAµ(x) = Aa,µ(x)Ta ∈ su(Nc), tr(TaTb) = 1

2δ ab, the properties of
which with their field strength tensorGµν(x) are defined by the action

S[A] =
1

2g2

∫

d4x tr(Gµν(x)Gµν(x)) , (2.1)

can be classified by a gauge invarianttopological charge

Qt [A]≡
∫

d4x ρt(x), ρt(x) =
1

16π2 tr(Gµν(x)G̃µν(x)), G̃µν ≡ 1
2

εµνρσ Gρσ . (2.2)

For finite-action fields in a volumeV → ∞ the topological chargeQt turns out to be integer-valued,
because it can be expressed in terms ofwinding numbersor Pontryagin indices wi of continuous
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mappings of three-dimensional compact manifolds (surrounding possible singularities of the poten-
tials at finite or infinitexi) into the subgroupSU(2), describing “homotopy classes” of the mapping
S(3) → SU(2)≡ S(3),

Qt [A] ≡
q

∑
i=1

wi ∈ Z . (2.3)

The functionalQt [A] is invariant under continuous deformations, which for lattice discretized fields
holds only if certain smoothness conditions are satisfied. From

∫

d4x tr [(Gµν ± G̃µν)
2] ≥ 0 one

immediately finds the continuum actionS[A] to be bounded from below in each topological sector

S[A] ≥ 8π2

g2 |Qt [A]| . (2.4)

Gauge field topology became a fundamentally interesting topic for QCD studies almost 40 years
ago, when classical, topologically non-trivial field configurations, calledBPST instantons[17],
were found by solving the(anti)selfdualityequationGµν = ±G̃µν . The simplestSU(2) solution

(with g2

8π2 S= |Qt | = 1) in the singular gauge reads (with ’t Hooft’s symbolsη (±)
aµν = εaµν for

µ ,ν = 1,2,3, η (±)
a4ν =−η (±)

aν4 =±δaν , η (±)
a44 = 0)

Aa (BPST)
µ (x) = Raαη (±)

αµν
2 ρ2 (x−z)ν

(x−z)2 ((x−z)2+ρ2)
(2.5)

depending on eight modular space coordinates (positionz, scale-sizeρ, and global group space
rotationR). Note thatSU(Nc) solutions are obtained by embeddingSU(2) solutions. The sin-
gular gauge instanton potential falls off asx−3 at largex. Thus, the Yang-Mills path integral
∫

DAexp−S[A] can be semiclassically “approximated” by all possible superpositions of (anti)
instantons sufficiently distant from each other. Evaluating the integral over leading order quantum
flucuations around the (anti)instanton configurations, the path integral can be reduced to a parti-
tion function in the modular space of the instanton parameters [18]. This idea led from thedilute
instanton gasmodel to an infrared regularized statistical mechanics of aninstanton liquid[19].

Taking into accountNf fermion flavor degrees of freedomψ f with identical massm, the effect
of topologically non-trivial configurations like instantons enters through theaxial anomaly[20]

∂µ jµ5(x) = 2mP(x)+2Nf ρt(x) (2.6)

with the topological charge densityρt(x) according to Eq. (2.2) and

jµ5(x) =
Nf

∑
f=1

ψ̄ f (x)γµγ5ψ f (x), P(x) =
Nf

∑
f=1

ψ̄ f (x)γ5ψ f (x) . (2.7)

By integrating Eq. (2.6) one gets a relation known asAtiyah-Singer index theorem[21]

Qt [A] = n+−n− ∈ Z , (2.8)

wheren+ (n−) is the number of zero modes of the massless Dirac operatorγµDµ [A] with positive
(negative) chirality on the gauge field backgroundA. A combination of the related Ward identities
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reads as an identity for thetopological susceptibility[22]

χt ≡
1
V
〈Q2

t 〉
∣

∣

∣

∣

Nf

≡
∫

d4x 〈ρt(x)ρt(0)〉 = − 4m
(2Nf )2〈∑

f

ψ̄ f ψ f 〉+
(2m)2

(2Nf )2

∫

d4x 〈P(x)P(0)〉 ,

=
1

2Nf
m2

πF2
π +O(m4

π) , (2.9)

i.e. in full QCD it has to vanish linearly withm2
π in the chiral limit. As we shall see below,

confirming this limit is still a challenge for lattice QCD. Note that Eq. (2.9) holds alsoon the lattice
for Ginsparg-Wilson fermions [23, 24] (see below). Applying a 1/Nc expansion, where fermion
loop contributions become fully suppressed (quenched approximation, i.e.Nf = 0), E. Witten
(on the basis of current algebra theorems [25]) and G. Veneziano (taking the phenomenological
spectrum into account [26]) have proposed the relation

χquen
t =

1
V
〈Q2

t 〉
∣

∣

∣

∣

Nf=0
=

1
2Nf

F2
π [m2

η ′ +m2
η −2m2

K ]≃ (180MeV)4 . (2.10)

Therefore, the existence of topologically non-trivial contributions to the path integral leads to the
solution of the so-calledUA(1) problemexplaining that theη ′ meson (of the pseudoscalar flavor
singlet current) is not a Goldstone boson in the chiral limit and why in naturemη ′ ≫ mπ .

At this place it is worth to note, that the instanton liquid model of the QCD ground state
describes reasonably well phenomena related to chiral symmetry andUA(1) symmetry breaking.
However, without considering (still unkown) long-range correlations itfails to explain confinement.
For more information see reviews of instanton physics by T. Schäfer and E. Shuryak [27] as well
as by D. Diakonov [28], who has passed away also too early.

Let us turn to the case of non-zero temperatureT. The analogous semiclassical treatment of
the Yang-Mills partition function has been formulated in [29] based onHarrington-Shepard (HS)
caloronsolutions, i.e.x4-periodic instanton chains (1/T = b) [30]

Aa (HS)
µ (x) = η (±)

aµν ∂ν logΦ(x) (2.11)

with Φ(x)−1= ∑
k∈Z

ρ2

(~x−~z)2+(x4−z4−kb)2 =
πρ2

b|~x−~z|
sinh

(

2π
b |~x−~z|

)

cosh
(

2π
b |~x−~z|

)

−cos
(

2π
b (x4−z4)

) ,

omitting a possible globalSU(2) rotation. The topological charge of this solution is

Qt ≡
1

16π2

∫ b

0
dx4

∫

d3x ρt(x) =±1. (2.12)

As for BPST instanton solutions it exhibitstrivial asymptotic holonomy, i.e. the untraced Polyakov
loop at spatial infinity becomes an element of the centerZ(2) of SU(2),

Pexp

(

i
∫ b

0
A4(~x,x4) dx4

)

|~x|→∞
=⇒ P∞ ∈ Z(2) . (2.13)

Today we know that the HS caloron is only a special case of the more general and more compli-
catedKvBLL caloronsolution already mentioned above. TheSU(Nc) KvBLL caloron in general
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Figure 2: Left: Slice of the action density atx4 = const. in a logarithmic scale for a singleSU(3) KvBLL
caloron with non-trivial holonomy showing three static monopole constituents well separated from each
other. Middle (Right): Localisation of the zero mode for antiperiodic (periodic) boundary conditions for
the fermion field in thex4 direction. The figures are taken from Pierre van Baal’s talk at JINR, Dubna in
1999 [13].

allows non-trivial holonomy, i.e.P∞ /∈ Z(Nc). Such a caloron hasQt = 1 but consists ofNc frac-
tionally charged monopole constituents which turn into static (with respect tox4) BPS monopoles,
if the constituents are sufficiently separated from each other. Because of their selfduality these
monopoles are often also calleddyons. The action or topological charge of the latter are fully
determined by the eigenvalues of the asymptotic holonomyP∞ and constitute together the one-
instanton actionSinst = 8π2/g2 of the caloron. Fig. 2 shows a typical example for theSU(3) case.
It is obvious that such a configuration cannot be represented as a simpleSU(2) embedding. In the
opposite limit, where the constituents are located near to each other, the action and the topological
charge density of the KvBLL solution looks very similar to that of a HS caloron(or BPST instan-
ton), i.e. concentrated within one lump of action and topological charge. Twofurther properties are
characteristic for KvBLL solutions. First, the positions of the monopole or dyon constituents are
given by those locations, where at least two eigenvalues of the local untraced Polyakov loop, i.e.
the local holonomy, become degenerate [9]. Second, the zero mode of the massless Dirac operator
in a KvBLL caloron background is localized only around one of the constituents (see the middle
and right panels of Fig. 2). On which this happens depends on the boundary condition applied to
the fermion field in the Euclidean time direction [10, 31].

These properties can be used as a trigger, when detecting calorons and/or dyons from MC gen-
erated thermal lattice gauge field configurations by cooling, 4D APE smearingor overlap operator
mode expansions (see [32, 33, 34, 35] forSU(2) pure gauge theory and more recently [36, 37] for
SU(3)). The latter series of lattice investigations has led to a simple view of the topological struc-
ture of thermal Yang-Mills fields in terms of (anti)calorons and (anti)dyons.ForT < Tc, where the
spatially averaged Polyakov loop is fluctuating around zero, we see all possible dyon constituents
with equal statistical weight, as one would expect them in a KvBLL caloron withmaximally non-
trivial (asymptotic) holonomy. ForT > Tc, where the Polyakov loop average tends toSU(Nc)

center values and where one might expect caloron configurations with holonomies close to such
values, topological clusters identifiable with corresponding heavy dyon constituents are found sta-
tistically suppressed. As a consequence, on one hand (anti)calorons –containing necessarily heavy
and light (anti)dyons in this case – are rare, what explains the decreasing topological susceptibility
with rising temperature. On the other hand, clusters, which can be interpreted (with the triggers

5
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mentioned above) as light dyons are abundant. This observation made forSU(2) [34] as well as for
SU(3) [37] supports (non-Abelian) monopole dominance in the deconfinement phase.

Coming back to the continuum case, the dissociation of KvBLL calorons into dyon con-
stituents has led to the hope to describe quark confinement atT < Tc in terms of a liquid of corre-
lated BPS monopoles or dyons. This would realize a picture ofinstanton quarks[38] studied many
years ago in detail within the non-linearO(3)σ model [39]. Work in such a direction strongly en-
couraged by Pierre van Baal was done over recent years mainly by three groups [40] (see also talk
by E. Shuryak). It is worth mentioning that KvBLL calorons carry not only magnetic monopole
world lines (seen on the lattice within the maximally Abelian gauge) but also extended center vor-
tex structures [35], which seems to provide a bridge to confinement in terms of center vortices,
too (see the reviews by J. Greensite [41]). Finally, it is worth mentioning thatPierre’s work has
influenced also a new systematic development of the semiclassical approachwithin perturbation
theory calledresurgent trans-series expansions[42] (cf. talk by M. Ünsal).

3. How to measure topology on the lattice

Evaluating the topological chargeQt and correspondingly the topological susceptibilityχt

as well as identifying topological excitations on the lattice are old issues but remain important
challenges until today. There are two ways to address this question relatedto each other via the axial
anomaly (2.6) or the index theorem (2.8). The first one expresses the topological charge directly by
the lattice gluon field strengthGµν . This is easily done with a plaquette loop representation [43],
but the latticeQt is not an integer, and the corresponding topological susceptibility requires the
subtraction of a perturbative tail and a proper renormalization [44]. In combination with various
methods of stripping off quantum fluctuations i) by cooling – originally inventedin order to extract
approximate multi-instanton solutions [45], ii) by 4D APE [46], stout [47] or HYP smearing [48],
iii) by (inverse) blocking, smoothing or cycling [49], or iv) by the gradient flow [50] one ends up
with smooth lattice gauge field configurations, for which (improved) loop definitions provideQt

values being very close to integers. All these methods applied with a well-defined resolution scale
allow to reveal the topological structure of the Monte Carlo generated lattice gauge fields in terms
of clusters of topological charge.

Alternatives to determineQt are given by geometric definitions ofQt which rely on the ho-
motopy properties of the gauge field even on the lattice (with torodial boundaryconditions). Such
prescriptions were invented in the past by M. Lüscher [51], P. Woit [52] and A. Phillips and D.
Stone [53]. They all provide integer values by definition. But due to lattice artifacts on rough
lattice configurations they may yield different numbers. Only sufficiently smoothed fields will pro-
vide a unique answer. Sufficient conditions for such a smoothness existand can be expressed in
terms of upper bounds on the action density [51].

The second approach to determineQt employs various fermionic definitions. The basic obser-
vation is that any lattice Dirac operator obeying the Ginsparg-Wilson relation [54]

γ5D+Dγ5 = aDγ5D (3.1)

satisfies the index theorem (2.8) [55, 56]. Such Dirac operators have been realized within the
perfect action approach [55], with Neuberger’s overlap operator [57] as well as with domain wall
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fermions with an extra dimension [58]. But even for these constructions ofDirac operators holds
that the topological charge given by their index is not uniquely defined due to lattice artifacts.

Similarly to applying the gluonic definitions in combination with some smoothing prescription
one can use a fermionic filtering method by representing the topological charge densityρt in terms
of a finite set of low-lying modes of the choosen lattice Dirac operatorD,

ρt(x) = trγ5(
1
2

Dx,x−1) =
N

∑
n=1

(
λn

2
−1)ψ†

n(x)γ5ψn(x) . (3.2)

Indeed, comparing this filtering prescription with APE or stout smearing has shown that the number
of smearing steps can be optimized to a given numberN of low-lying modes such that the same
local topological structures are seen in terms of scale dependent clustering of topological charge
[59] and its varying fractal dimensionality [60]. One should expect that this holds also for other
smoothing methods including also the Wilson or gradient flow. We shall come back to this point
below (see Section 4.1).

Other possibilities to determineQt are given in terms of the anti-Hermitean Dirac operator6D
[61] or by counting the index from the spectral flow of the Hermitian Wilson-Dirac operator [62].
More recently a new fermionic method has been proposed by representingthe topological suscep-
tibility in terms of higher moments of scalar and pseudo-scalar currents and spectral projectors
[24, 63, 64, 65, 66, 67], see Section 4.3.

4. Selected recent lattice results

4.1 Cooling versus gradient (Wilson) flow

The old days’ cooling method used for the search for multi-instanton solutions[45] and more
recently to establish the non-trivial holonomy KvBLL calorons [68, 32, 12, 36] solves the lat-
tice field equations locally (for a given link variable), replaces the old by new link variable, steps
through the lattice (while the order is not unique), and, if sufficiently often repeated, ends up at
more or less stable plateau values for the topological charge and action. The method has much im-
proved asover-improved cooling[3, 68, 69] stabilizing (multi)instantons or calorons and therefore
providing extremely stable plateaus at nearly integerQt values. With an improved lattice represen-
tation of the field strength tensorGµν [70] one can nicely check the degree of (anti)selfduality e.g.
by comparing the topological charge with the action in instanton units.

Recent examples of typical cooling histories for gluodynamics atT > 0 obtained on lattice
sizes 163×4 can be seen from Fig. 3. As we have argued in [71] the stability (decay)of plateaus
for T < Tc (T > Tc) can be traced back to the KvBLL caloron structure and to its non-trivial
(trivial) asymptotic holonomy, i.e. to the dyon constituent mass symmetry (asymmetry). ForT >Tc

(anti)selfdual plateaus were occuring very rarely. Searching for withrespect to|Qt | first stable
plateaus the topological susceptibilityχt for gluodynamics as well as for full QCD withNf = 2
clover-improved Wilson fermions is obtained versusT/Tc as shown in Fig. 4 (for details cf. [71]).
It is obvious thatχt behaves much smoother through the crossover of full QCD than passing the
first order transition in gluodynamics. The behavior of the topological susceptibility at and beyond
the transition is essential for understanding the mechanism ofUA(1) restoration (and in the two-
flavor case for determining the universality class of the transition in the limitmπ → 0). It seems to
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Figure 3: Cooling histories for pure gluodynamics at non-zero temperature (from [71]). We show the action
in instanton unitsS/Sinst (blue full lines) and the topological chargeQt (red dashed lines), both represented
with an lattice-improved field strength tensor, see the text. Left: for confinement atT = 0.88Tc. Right: for
deconfinement atT = 1.12Tc.

0.9 1 1.1 1.20

0.05

0.1

0.15

0.2

0.25

χ
/T

c4

/TT c

0.9 1 1.1 1.20

0.2

0.4

0.6

0.8

1
χ

/T

/T

T c

c4

Figure 4: Topological susceptibilityχt vs. T/Tc obtained with over-improved cooling [71].Left: for
gluodynamics with lattice sizes 163 ∗ 4 (red circles), 243 ∗ 4 (blue up triangles) and 243 ∗ 6 (green down
triangles).Right: for full QCD with Nf = 2 clover-improved Wilson fermions for lattice sizes 163 ∗8 (red
up triangles) and 243∗8 (blue down triangles). The pion mass is ofO(1 GeV).

be too early to draw any final conclusion before taking the chiral limit in a proper way. Therefore,
it may not wonder, that different groups having recently discussed theissue ofUA(1) restoration
still come to different conclusions [72].

Compared to (improved) cooling as discussed before, the gradient flow stands theoretically
on a more sound basis. Proposed and thoroughly investigated by M. Lüscher since 2009 [50] and
studied also with respect to perturbation theory [73] it provides an easy controllable manner to
remove UV fluctuations (cf. his plenary talks at LATTICE 2010 and 2013 [74]). It’s flow time
evolution describing a diffusion process at scaleλs ≃

√
8t, t = a2τ and continuously minimizing

the action is uniquely defined for an arbitrary lattice field{Uµ(x)} by solving

V̇µ(x,τ) =−g2
0

[

∂x,µS(V(τ))
]

Vµ(x,τ), Vµ(x,0) =Uµ(x) . (4.1)

The physical scale to stop the flow can be efficiently fixed by demanding e.g.

t2〈1
2

tr GµνGµν〉|t=ti = Ti , i = 0,1 with T0 = 0.3, T1 =
2
3
. (4.2)
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Simple renormalization properties, in particular in the fermionic sector, and the emergence of topo-
logical sectors at sufficient large diffusion scale are clear advantages of the method.

However, this does not mean that the previously mentioned cooling or smearing methods have
to be abandoned. A comparison and mutual optimization of the fermionic filtering method with
those pure gauge field methods have demonstrated a correspondence between them [59]. Indeed,
the gradient flow can be mapped to cooling in the ensemble average, as C. Bonati and M. D’Elia
have recently shown [75]. In the pure gluodynamic case with the standardWilson plaquette action,
for given numbers of cooling sweepsnc they have determined the Wilson flow timeτ, which – in
the average – provides the same plaquette action. They have estimated the dimensionless flow time
τ on a perturbative ground and found it well satisfied via numerical simulations to be τ = nc/3 as
can be seen from the left panel of Fig. 5. On the right panel of the same figure one nicely sees the

0 5 10 15 20 25 30
nc

0

2

4

6

8

10

τ(
n c

)

β=5.95
β=6.07
β=6.2

quad
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

λS [fm]

192

194

196

198

200

χ1/
4  [M

eV
]

gradient flow β=5.95
gradient flow β=6.07
gradient flow β=6.2
cooling β=5.95
cooling β=6.07
cooling β=6.2

Figure 5: Left: Flow time τ vs. number of cooling stepsnc. Right: topological susceptibilityχ
1
4

t vs.
diffusion scaleλs for cooling and gradient (Wilson) flow at various lattice scales. Both figures taken from
[75].

topological susceptibility for cooling and for the Wilson flow to agree completely. Moreover, the
strong dependence on the lattice spacing at fixed diffusion scaleλs becomes obvious. Additionally,
the authors convinced themselves that cooling and Wilson flow reveal the same local topological
structure with high confidence. Let us add that recently also Wilson loops have been computed
with smearing and gradient flow. They were found to agree to a high degree (see [76] and talk by
M. Okawa).

4.2 Exploring the mass dependence ofχt in full QCD

Only over the last years the expected chiral behavior of the topological susceptibility χt ∼
F2

π m2
π ∼ mq〈q̄q〉 has found a real confirmation from lattice full QCD. Let us briefly sketch some

recent work in this direction.

The SINP Kolkata group [77, 78] has employed the standard Wilson gaugeand fermion action
(Nf = 2) at mπ ≥ 300 MeV. The topological chargeQt was measured with the blocking-inverse
blocking (smoothing) method [49]. An improved ansatz for the densityρt was taken. The topo-
logical correlation function for varying volume and quark mass has been studied. A non-negligible
lattice spacing effect could also be made transparent. From the left panelof Fig. 6 we observe a
clear descent towards vanishingχt with a pion mass squared tending to zero, while on the right
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Figure 6: Left: χt versusm2
π for several volumes. For comparison older data from SESAM-TχL collabo-

ration [79] is shown (figure taken from [77]).Right: ρt correlation functionCt(r) at different quark mass
values in terms of the Wilson hopping parameterκ (from [78]).

panel the space correlation functionCt(r) of the topological density shows the expected change in
sign and a behavior becoming the steeper the smaller the quark mass is.

A brand-new topology Wilson flow analysis of the ALPHA collaboration has been presented
at this conference by M. Bruno [80]. Since the Wilson flow can be stopped at a well-defined scale,
the results should be under better control than the previously mentioned ones. The ALPHA col-
laborators studiedNf = 2 lattice QCD withO(a)-improved Wilson fermions and standard Wilson
gauge action. They investigated the Wilson flow on CLS ensembles with three lattice spacings,
for mπ ∈ [190,630] MeV and a lattice extentLmπ > 4. They employed periodic as well as open
boundary conditions. For the author it came somewhat as a surprise thatQt autocorrelations were
observed to become weaker with decreasing pion mass1. An overall fit to χt with a χPT ansatz
like t2

1χt = c t1m2
π + b a2

t1
describes the mass dependence sufficiently well (witht1 denoting the

flow scale according to Eq. (4.2)). However, lattice artifacts turned out tobe strong and a proper
chiral limit only possible after the continuum extrapolation is taken (see Fig. 7). Compared to the
quenched case also shown in the figure the full QCD result turns out to bequite strongly suppressed
over the whole range of pion masses studied.
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t1 mπ
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Nf=0

a∼0.075 fm

a∼0.065 fm

a∼0.048 fm

ChPT LO

Figure 7: Wilson flow estimated topological suceptibilityχt |t=t0/2 versusm2
π – both in units oft1 – reported

by the ALPHA collaboration [80].

Preliminary results of a gradient flow analysis for the topological susceptibility were reported

1The author thanks S. Mondal for the information that such an observation has been reported also in [81].
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by QCDSF (R. Horsley, G. Schierholz et al) forNf = 2+ 1 QCD with a tree-level Symanzik
improved gauge action and (stout smeared) clover-improved Wilson fermions. In this investigation
QCDSF follows two chiral limit strategies: i)mu = md = ms → 0 and ii) mu = md → 0, while
mu+md +ms = m= const. with m tuned to its physical value. The corresponding dependence of
the topological susceptibility on the pion mass can be jointly fitted on the basis of theflavor-singlet
and flavor-octet Gell-Mann-Oakes-Renner relations (see Fig. 8).

Let us conclude this discussion with the comment that the continuum limit for gradient flow
estimates can be further improved (cf. talks by A. Ramos, S. Sint and D. Nogradi [82, 83]).
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Figure 8: Topological susceptibility fixed at gradient flow scalet0 versusm2
π for two chiral limit strategies

as explained in the text (communicated by QCDSF, thanks to G.Schierholz).

.

4.3 Spectral projector method applied to twisted mass fermions

Ten years ago, extending an analysis presented in Ref. [24] M. Lüscher succeeded to pro-
pose a fermionic representation for the topological susceptibilityχt in terms of singularity-free
density chain correlators, which has not to be renormalized [63]. Treated with spectral projectors
PM allowing to project onto the subspace ofD†D eigenmodes below certain thresholdM2 and ap-
proximating them by rational functionsRM (see [64]) a first computation in pure gluodynamics
became possible two years later [65]. For the valence quarks they used two-flavor clover-improved
Wilson fermions. The numerical result forχquen

t turned out to be in good agreement with the cor-
responding result [84] from the index theorem studied with Neuberger’s overlap operator [57] and
also with the phenomenological value (see Eq. (2.10). To my knowledge, for the first time this
approach has been applied to computeχt (and the chiral condensate) in full QCD by the ETM
collaboration [66, 67]. The authors used dynamical Wilson twisted mass fermions withNf = 2 as
well asNf = 2+1+1 flavor degrees of freedom (cf. talks by E. Garcia Ramos and K. Cichy). The
topological susceptibility has been represented and approximated as

χt =
1
V

〈Tr{R4
M}〉

〈Tr{γ5R2
Mγ5R2

M}〉 〈Tr{γ5R2
M}Tr{γ5R2

M}〉

=
1
V

Z2
S

Z2
P

〈Tr{γ5R2
M}Tr{γ5R2

M}〉= 1
V

Z2
S

Z2
P

(

〈C 2〉− 〈B〉
N

)

, (4.3)

whereZ(2) random estimators have been used to estimate

B =
1
N

N

∑
k=1

(RMγ5RMηk, RMγ5RMηk) and C =
1
N

N

∑
k=1

(RMηk, γ5RMηk) . (4.4)
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Note that the renormalization constants satisfyZS
ZP

= 1 and C ≡ Qt ∈ Z for N → ∞, if D is
a Ginsparg-Wilson operator (e.g. the overlap operator), i.e.C plays conditionally the role of the
topological charge. For the Wilson twisted mass discretization one can rely onautomaticO(a)
improvement [85]. Since the authors used also an improved gauge action they could hope for a
weaka-dependence of the topological susceptibility. The renormalization constants ZS,ZP can be
taken also from other ETMC evaluations [86]. The “topological” chargeC turned out nicely
Gaussian-like distributed. In Fig. 9 selected results are shown. The left panel demonstrates the
projector method computation of theZ-factor ratio to be consistent with that of Refs. [86]. The
right panel shows the topological susceptibility as a function of the quark mass. Within the error
bars, which are still quite large, the different lattice scale results more or less agree, indeed. In any
case the behavior ofχt is seen to be compatible with a linear decrease with the quark mass towards
the chiral limit. The slope of this curve allows also to determine the chiral condensate. The result
of this estimate was consistent with that of other methods. Finally, in the quenched limit χquen

t

came out in good agreement with Eq. (2.10) (cf. E. Garcia Ramos’ talk).
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Figure 9: Left: The ratio of renormalization constantsZS
ZP

versus threshold massMR for Nf = 2. In the right
most part of the panel results of alternative computations are shown [86].Right: TheNf = 2+1+1 result
for χt in units of the Sommer scaler0 [87] versus renormalized quark massµR for three lattice spacings.
Figures are taken from [67].

4.4 Comparing various methods to determineQt and χt

The ETM collaboration has made a joint effort [88] to compare various methods to compute
the topological susceptibility within the framework ofNf = 2 twisted mass fermions and tree-level
Symanzik improved gauge action. All computations were done on the same set of configurations
for a pion mass valuemπ = 300 MeV, with a lattice spacinga= .081 fm and linear lattice sizeL =

1.3 fm. Without taking the continuum limit one should not really expect a full agreement even in
case the methods are really equivalent and correctly established. The authors compared fermionic
definitions of the topological charge (index of the overlap operator, Wilson-Dirac operator spectral
flow (SF), spectral projector method (SP)) with gluonic field strength (FT)definitions applying
various versions and stages of gradient flow (GF), cooling, and APE/HYP smearing. In Fig. 10
we see how the different methods to determineQt are correlated. On the right hand side the
colored correlation scale from bottom (blue = weak correlation) to top (red=strong correlation)
is given. Most of the versions are strongly correlated among each other, except the gluonic FT one
without any removal of perturbative fluctuations. This is a well-known fact since the early days

12
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of topological lattice investigations. That also the spectral projector resultsare weakly correlated
to the other ones does not come as a surprise, too, because of the stochastic determination of the
‘charge’C in accordance with Eq. (4.4). A comparison of the resultingχt values shows that all
methods provide results in the same ball park. This holds also for the spectral projector method,
provided the spectral thresholdMR is taken high enough. For details we refer to [88]. The outcome

index nonSmear s=0.4 |  1
index nonSmear s=0 |  2

index HYP1 s=0 |  3
SF HYP1 s=0.75 |  4
SF HYP1 s=0.0 |  5
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Figure 10: Correlation matrix between different methods to determinethe topological charge (from [88]).

of the ETMC comparison certainly allows the conclusion that the well-controllable gradient flow
method at the first place, but also cooling or smearing methods, if adapted withanalogous criteria to
fix the diffusion scale, are optimal (also from the computational point of view) in order to determine
topological properties of lattice QCD.

5. Conclusions

First of all I have to apologize for not having discussed many issues, which have been touched
during this symposium and would have been of interest here – as they wouldfor Pierre van Baal.
The following topics belong to the problems within the range of this short reviewbut could not be
covered here:
- the recentη ′−η mixing results [89], which became possible due to various powerful noise
reduction techniques [90],

- theUA(1) symmetry restoration puzzle mentioned already above [72],
- the use of open boundary conditions suppressing HMC’s autocorrelation for Qt [91, 80]
(cf. talk by G. Mc Glynn),

- the simulation ofθ -vacua with Langevin techniques or dual variables
(talks by L. Bongiovanni, T. Kloiber),

- considerations with fixed topology (talks by A. Dromard, H. Fukaya, U. Gerber, J. Verbaarschot),
- ongoing discussions about the vacuum structure and topological excitations (talks by N. Cundy,
P. de Forcrand, M. Hasegawa, M. Ogilvie, A. Shibata, H.B. Thacker, D. Trewartha, M. Ünsal),

- phase structure at differingmu,md masses ([92] and talk by S. Aoki),
- topology in related theories asG2 Yang-Mills theory andN = 1 SUSY on the lattice
([93] and talk by P. Giudice),

- effects in QCD caused by magnetic background fields [94].
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Let us briefly summarize. Investigations of KvBLL caloron and dyon gas models with non-
trivial holonomy as initiated by Pierre van Baal are still interesting and encouraging for better
describing (de)confinement within the finite temperature setting of QCD. Evenmore, they may
pave a way to improve systematically the semiclassical approach. The computation of the topolog-
ical susceptibility with new methods (gradient flow, spectral projector method) is on a promising
way. In any case one has to keep track of lattice artifacts and to study the continuum limit.
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