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Few-body hadronic observables play an essential role in a wide number of processes relevant for
both particle and nuclear physics. In order for Lattice QCD to offer insight into the interpretation
of few-body states, a theoretical infrastructure must be developed to map Euclidean-time corre-
lation functions to the desired Minkowski-time few-body observables. In this talk, I review the
formal challenges associated with the studies of such systems via Lattice QCD, as first introduced
by Maiani and Testa, and I also review the methodology to circumvent said limitations. The first
main example of the latter is the formalism by Lüscher to analyze elastic scattering and a sec-
ond is the method by Lellouch and Lüscher to analyze weak decays. I discus recent theoretical
generalizations of these frameworks that allow for the determination of scattering amplitudes,
resonances, nonlocal contribution to matrix elements, and form factors below and above inelastic
thresholds. Finally, I outline outstanding problems, including those that are now beginning to be
addressed.
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1. Introduction

As the standard models continues to manifest itself as an increasingly accurate effective field
theory (EFT) for the underlying building blocks of the universe, experimentalists turn their atten-
tion to rare and exotic processes. One such example is the B0→ K∗`+`−→ Kπ`+`− semileptonic
decay, which has recently be observed by the LHCb Collaboration to be in 3.7σ discrepancy with
the current Standard Model prediction [3]. This discrepancy is just as likely due to needed ex-
tensions of the Standard Model as it is due to limited understanding of the Standard Model and
our ability to rigorously predict observables from it. This is a remarkably challenging task, due to
primarily two reasons. First, this process depends both on the weak and strong interactions, and
QCD is non-perturbative at medium to low energies. This limitation can now be circumvented
by utilizing lattice QCD. This of course, requires performing numerical evaluations of QCD cor-
relation functions in a finite Euclidean space-time. The second challenge is associated with the
nature of the K∗(892). The K∗(892) is a resonance that can decay via the strong interaction to
states with two particles (Kπ) or three particles (Kππ) and it resides just below the four-particle
threshold (Kπππ). As a result, in order to study such a system we must understand how to relate
the information gathered via lattice QCD of strongly interacting few-body, multichannel systems
in a finite, Euclidean space-time to their infinite volume, Minkowski space counterparts. Although
to the untrained eye this might seem to be a subtlety associated with lattice QCD calculations, it is
one of the formal cornerstones of strongly interacting few-body systems on which a sizable portion
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Figure 1: (a) Shown is the finite volume spectrum of the A1 irreducible representation (irrep) of the Dic4

symmetry group for I = 1 ππ channel determined by the Hadron Spectrum Collaboration [1]. The rightmost
column shows the spectrum determined by using only “meson-meson-like” operators, the center column has
the spectrum obtained only “qq̄-like” operators, and the left column shows the full spectrum obtained us-
ing a total of 22 operators including both “meson-meson-like” and “qq̄-like” operators. Reproduced with
permission of Jozef Dudek. (b) For increasingly complicated systems the number of Wick contractions be-
come prohibitively computationally expensive, e.g., the simplest 4He operator has naively 6!×6! = 518,400
contractions.
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of the on-going lattice QCD efforts hinges.
Another equally important problem that has received a great deal of attention from the lattice

community is the N∗(1440), “the Roper”. From the point of view of quark models, it is unnatural
that the Roper is lower in energy than the negative-parity ground state N(1535). To try to shed
some light onto this seeming unnaturalness, various lattice groups have begun to determine the
spin-1/2 spectrum. Although some report that the hierarchy of these two states is reversed from
what is observed in nature, no calculation has dealt with the resonant nature of the Roper. This is
a remarkably challenging task, since at the physical point, the Roper lies above the Nπ , Nππ and
Nπππ thresholds, and it decays 30%-40% of the time to three particles.

There are, arguably, four main challenges associated with studying few-body systems on
the lattice. As illustrated in Figs. 1 and 2, these involve the construction of few-body opera-
tors [4, 5, 6, 7, 8, 9, 10, 11, 1, 12, 13] , the large number of Wick contractions [14, 15, 16, 17], the
deterioration of the signal at large Euclidean time [18, 19, 20, 19, 21, 22], and the interpretation
of the observables. In this talk I review progress made in the latter of these. This is of particular
significance, since it addresses the question: “If one manages to construct the set of optimal opera-
tors, perform all the necessary Wick contractions and obtain the lattice QCD correlation functions
with an unprecedented level of precision, what physical quantities are accessible from these?”. For
systems involving a single stable particle, this is a straight forward question to answer. For systems
involving two particles or more this is a far more subtle matter. This is primarily due to the fact that
lattice QCD calculations are performed in a finite volume. Of course, lattice QCD calculations are
necessarily performed with non-zero lattice spacing and typically with unphysical quark masses.
For the remainder of this discussion, we assume that the continuum limit has been taken or that
discretization artifacts are well below the uncertainty of the observable of interest. Furthermore,
the discussion that follows is generally independent of the quark masses. That is to say, we are
interested in finding a mapping between lattice QCD observables and physical quantities for the
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Figure 2: (a) Shown are the effective masses of the nucleon, deteuron, 3He and 4He as a function of the
Euclidean time determined by the NPLQCD collaboration for mπ ∼ 800 MeV [2]. These illustrate the
deterioration of the signal as a function of the baryon number of the correlation function. Reproduced
with permission of André Walker-Lound. (b) Lattice QCD calculations are performed in a finite volume,
typically with periodic (or in general twisted) boundary conditions, making the interpretation of lattice QCD
observables a nontrivial one.
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given quark masses used in the calculation. After one obtains a physical quantities for a range of
quark masses, one may proceed to extrapolate/interpolate to the physical point using either χPT or
a χPT-inspired model.

In order to find such a relation between lattice QCD observable and physical observables it
is convenient to equate two of the three main representations of correlation functions. The first of
these, is the spectral decomposition of the correlation function. For example, let O†

λ
(y0,−P) be a

source operator at time = y0 for a system with total momentum P and quantum numbers defined by
λ . Similarly, let O ′

λ ′(x0,P) be a sink operator at time = x0 for a system with total momentum P and
quantum numbers defined by λ ′. The corresponding two-point function can be written (assuming
the temporal extent of the lattice is infinite) by inserting a complete set of state as

C(x0− y0) = 〈0|O ′
λ ′(x0,P)O†

λ
(y0,−P)|0〉 (1.1)

= δλ ,λ ′∑
n

e−Eλ ,n(x0−y0)〈0|O ′
λ ′(0,P)|Eλ ,n;L〉〈Eλ ,n;L|O†

λ
(0,−P)|0〉. (1.2)

In general, the two operators can be distinct but necessarily must have the same quantum numbers
in order for the correlation function to be nonzero. Eλ ,n is the nth finite volume energy level (the
volume dependence is left implicit) for a system with quantum numbers λ , and 〈0|O ′

λ ′(0,P)|Eλ ,n〉
is the matrix elements of the interpolating operator and will be referred to as an overlap factor. To
be able to interpret the spectrum and the overlap factors, we rely on the fact that the correlation
function can be written as the sum over all Feynman diagrams of the infrared degrees of freedom
(hadrons) that are allowed by the corresponding quantum numbers,

C(x0− y0) = Sum over all Feynman diagrams in Euclidean spacetime. (1.3)

It is this representation that lead Maiani and Testa [23] to demonstrate that the infinite volume
limit of the overlap factors for systems involving two particle or more not only depend on on-
shell scattering amplitudes but also on off-shell scattering amplitudes. This has been revisited
in Ref. [24, 25] for systems in a finite volume. Furthermore, it was this representation that lead
Lüscher to show that the finite volume spectrum can be directly related to infinite volume on-shell
scattering amplitudes [26, 27] and later lead Lellouch and Lüscher to show [28] that K → ππ

decay amplitude can be obtained from the finite volume matrix element of the weak current. 1

2. The finite volume spectrum and scattering amplitudes

Although the observation that scattering amplitudes cannot be directly determined from the
amplitude of the two-point correlation functions determined from lattice QCD is commonly at-
tributed to Maiani and Testa’s no-go theorem, this is a problem whose solutions predates it. By

1The third representation is the path integral representation,

C(x0− y0) =
1

ZEucl.

∫
D [U,q, q̄] O ′

λ ′(x0,P)O†
λ
(y0,−P) e−SEucl. , (1.4)

which allows one to approximate the integral using Monte Carlo sampling and thereby numerically evaluating the cor-
relation functions.
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Figure 3: Shown are two examples of the Kπ −Kη coupled channel spectrum as a function of the spatial
extent L = 16,20, and 24 determined by the Hadron Spectrum Collaboration [HadSpec] using mπ ∼390
MeV [42]. On the left, the determined center of mass spectrum (error bars) for the A+

1 irrep of the Octahedral
group is compared with the spectrum in the absence of interactions (red line for Kπ and green line for Kη).
On the right is the same for the A1 irrep of the Dic4 group, corresponding to a system with total momentum
|P|= 2π/L.The figures are reproduced with the permission of David Wilson and Jozef Dudek.

the time that Maiani and Testa made this observation, Martin Lüscher had already found a non-
peturbative mapping between the finite volume spectrum and the infinite volume scattering ampli-
tude. 2 In his original work, Lüscher found a master equation for the spectrum of two particles with
zero spin at rest. This has been generalized for various two-body systems with nonzero total mo-
menta, e.g., see Refs. [26, 27, 29, 30, 31, 32, 33, 34]. Earlier this year it was shown that generaliz-
ing this work to two-particle systems with arbitrary intrinsic spin, any number of open two-particle
channels, nonzero total momentum, and generic twisted boundary conditions on a volume shaped
as a generic rectangular prism is straightforward [35]. Generalizing this idea to systems with ener-
gies above the three-particle threshold is remarkably challenging [36, 37, 38, 39, 38, 40, 41]. Here
we discuss process made this past year on these two fronts.

2.1 Two-body finite volume spectrum

In order to find the condition that the spectrum must satisfy, one need only look at the poles of
the correlation function. For energies below the three-particle threshold, it is sufficient to evaluate
the sum of all the 2→ 2 fully dressed Feynman diagrams in a finite volume. This amounts to
replacing integrals over intermediate momenta to sum over the allowed momenta. One can obtain a
model independent relation between the spectrum and the infinite volume scattering amplitude [35]

det [M−1
2 +δG V ] ≡ detoc

[
detpw [M−1

2 +δG V ]
]
= detoc

[
detpw [K −1

2 +F2]
]
= 0, (2.1)

where the determinant detoc is over N open coupled channels and the determinant detpw is over
the |`S,JMJ〉 basis. `S denote the orbital angular momentum and the total spin of the two-particle
systems, respectively, and J,MJ is the total angular momentum and its azimuthal component. M2 is
the on-shell c.m. scattering amplitude which in general can couple states with different (`S) and/or
different flavor-space channels, .e.g., Kπ −Kη . The K-matrix, K2, is related to the scattering

2Lüscher was not the first to observe the fact that the finite volume spectrum and the infinite volume S-matrix are
relatable, but he was the first to find a non-perturbative solution for said problem.
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amplitude via M−1
2 =K2− iρ , ρ is the phase space factor. The matrix δG depends on the volume,

the total momentum, masses, energy and spin of the particles of interest and its matrix elements
are explicitly written in Ref. [35]. Also used is the finite volume function, F2, which is related to
δG via δG = F2 + iρ . Prior to decomposing onto angular momentum, both K2 and F2 are real.
These matrix elements are written explicitly for systems in a volume that is a generic rectangular
prism and that has twisted boundary conditions. Note that the majority of lattice QCD calculations
use period boundary conditions on the spatial extent of the lattice, and these are a subset of twisted
boundary conditions.

This result is model-independent, non-perturbative and universal. This is due to the fact that
in arriving at Eq. 2.1, one only needs to understand the analytic structure of the infinite and finite
volume Feynman diagrams. No assumptions need to be made about the nature of the particles in
the systems or the underlying effective field theory, other than it must satisfy unitary.

In general, the matrix inside the determinant is infinitely large, but in practice one must trun-
cate it. This truncation is justified by the fact that although different partial waves mix due to the re-
duction in symmetry, for low energies the higher partial waves are kinematically suppressed. Simi-
larly, the contribution from states that cannot go on-shell are exponentially suppressed≤O(e−mπ L).
Furthermore, the matrix inside the determinant can be blocked diagonalized since different irre-
ducible representations (irreps) of the underlying symmetry group do not couple to each other.
After having performed this, one finds the condition the spectrum satisfies.

2.1.1 Correlation functions and “off-shell” states

Having found the relationship between the finite volume spectrum and the on-shell infinite
volume scattering amplitude, it is easy to explain why the overlap factors for the correlation func-
tion will, in general, depend on “off-shell” scattering amplitudes. In order to explain this, we
can consider energies where only one channel can go on-shell. Imagine the system to be com-
posed of two pions with zero total momentum. Therefore, the simplest interpolation operator one
could imagine would have the form O(t) = π(t,k)π(t,−k), where k = 2πd/L and d is an inte-
ger triplet. Let En be the nth energy satisfying Eq. 2.1. Unless the interactions are exactly zero,

En 6= 2
√

k2 +m2
π = 2ωk, therefore the free states cannot go on-shell. Instead there is be a momen-

tum qn that satisfies En = 2
√

q2
n +m2

π , corresponding to an on-shell state. Consequently, the over-
lap factor |〈0|O(0)|En;L〉| must encode information regarding on-shell as well as off-shell states.
Reference [24] shows that this factor is proportional to |K(En,k,qn)|, which is the absolute value of
the K-matrix for a incoming state with energy and momentum (En,k) and therefore off-shell, while
the on-shell outgoing state with energy and momentum (En,qn). Furthermore, it is straightforward
to shown that the overlap factor is inversely proportional to |En−2ωk| [43], explaining why certain
two-body operators will more strongly overlap with a given eigenstate. Following this logic, if
the operator used is instead a “qq̄-like” operator, one should not expect to have a dependence on
off-shell states.

2.1.2 An example: πK−ηK at mπ ∼ 400 MeV

To this day, the only implementation of Eq. 2.1 to understand the lattice QCD spectrum for
energies where more than one two-particle channel can go on-shell is by the Hadron Spectrum
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Figure 4: Shown are two examples of the Kπ phase shifts (red), Kη phase shift (green) and the inelasticity
(blue) for the (a) S, (b) P and (c) D partial waves determined by the Hadron Spectrum Collaboration as
described in the text [42]. The figure is reproduce with the permission of David Wilson and Jozef Dudek.

Collaboration [HadSpec] [42] and was presented at the 32nd International Symposium on Lat-
tice Field Theory by David Wilson 3. They determined the S, P, and D-wave scattering phase
shifts and inelasticities for the πK−ηK coupled-channels using light quark masses correspond-
ing to mπ ∼ 400 MeV. There were over 100 energy levels determined using three different vol-
umes (satisfying mπL>∼ 4) and five different types of boosts, corresponding to d = PL/2π =

{[000], [001], [011], [111], [002]} and all allowed cubic rotations. Figure 3 shows a sample of the
energy levels determined and are compared with the non-interacting energy levels. It is important
to emphasize that for the systems considered, in general the S, P and D partial waves mix onto each
other, and in fitting the spectrum, the HadSpec Collaboration have taken into account these effects.

After determining the spectrum, the HadSpec collaboration proceeded to them fit the spectrum
using Eq. 2.1 using a range of possible parameterizations of the scattering amplitude. Following
this procedure they obtain the scattering phase shifts and inelasticities depicted in Fig. 4. By an-
alytically continuing the scattering amplitudes onto the complex plane, in the S-wave channel,
they observe a wide resonance that they associated with the kaon resonance that is known as the
K?

0 (1430) at the physical point. They also find a “virtual bound state”, i.e., a pole on the real axis
located on unphysical sheet, which they identify with the κ . In the P-wave channel, they find that
the K?(892) is bound. Most surprising of all, in the D-wave channel they find a narrow resonance,
which presumably corresponds to the K?

2 (1430). This is striking since, as can be seen from Fig. 4,
the energies used in fitting the resonance lies well above the Kππ . In performing the calculation
they have not accounted for three body effects in neither the operator construction nor the interpre-
tation of the spectrum. The rather good fit of the spectrum would then lead one to postulate that
at the quark masses used, following the arguments sketched in Sec. 2.1.1, the Kππ only weakly
couples to the two-body system.

2.1.3 Including perturbative QED effects

Currently all lattice QCD calculations involving states that have overlap with two particles or
more are performed without dynamical QED effects. Nevertheless, some calculations of single

3The first exploratory calculation of a coupled-channel system in a finite volume was by Guo using a 1+1D toy
model [44].
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particle states are beginning to incorporate QED interactions, e.g., see Refs. [45, 46, 47, 48, 49].
The infinite range of QED in general leads to a large (power-law) FV effects. These effects can
become manageable if one modifies the implementation of QED on the lattice, for instance by
removing the zero mode of the photon field. In this framework, finite volume effects have been
explored in several one-particle observables [50, 51, 52, 49].

Most recently, Beane and Savage have shown that scattering parameters of low-lying charged
two-particle states can in principle be determined by performing calculations of the finite volume
spectrum with dynamical QED+QCD [53]. In their work, they calculate the leading order QED
effects, i.e., O(α), to the quantization condition of two particle systems. As a result, their result
does not hold for systems with QED bound states. In order to make some progress, they restrict
themselves to non-relativistic systems below the QCD t-channel cut and the QED inelastic thresh-
old (photon production). They restrict the two-particle system to be in an S-wave and ignore higher
partial waves. Within these approximations, they find at O(α), the two-particle finite volume spec-
trum satisfies

− 1
a′C,L

+
1
2

r′0,L p2 + ... =
1

πL
SC [p,aC,r0,L] + αm

[
ln
(

4π

αmL

)
− γE

]
+ ... , (2.2)

where p is the relative momentum of the two on-shell particles. a′C,L and r′0,L are finite volume
functions that in the infinite volume limit asymptote to the scattering length and effective range,
and SC is a finite volume function that is closely related to the Zeta functions but also depends on
the physical quantities listed in its argument [53].

2.2 Three-body finite volume spectrum

Recently there have been attempts to generalize Eq. 2.1 to energies where three or more parti-
cles can go on-shell [36, 37, 40, 41], the most recent of which was presented in this conference and
is reviewed here [39, 38]. In their work, Hansen and Sharpe, found a master equation describing the
finite volume spectrum for three degenerate scalar bosons. In arriving at their result, they have as-
sumed for simplicity that the two-body K-matrix, K2, is finite in the energy range considered. This
amounts to restricting the phase shift of the `th partial wave to satisfy |δ`| < π/2. This currently
prevents the implementation for studies of, say, ρπ scattering. Furthermore, they have assumed an
underlying Z2 symmetry that, for examples, prohibits 2→ 3 processes.

In order to introduce the result, it is necessary to first define the degrees of freedom of a
three-particle systems. Let (E,P) be the total energy and momentum and let all the particle be on-
shell. The system can be separated onto an “spectator” and a “pair”. Let k be momentum of the
spectator and (`,m) be the angular momentum projection of the pair in its c.m. frame. The matrices
and determinant below are evaluated in the space of the direct product of spectator momentum and
angular momentum of the pair. Hansen and Sharpe arrive at a non-perturbative, fully relativistic
result,

det [F−1
3 + iKdf,3] = 0 . (2.3)

Kdf,3 is the “divergence free” three-body K-matrix and its relationship to the fully 3→ 3 scattering
amplitude is defined in Ref. [39]. Unlike Eq. 2.1, where the infinite volume and finite volume
kinematic functions are nicely separated, the function F3 is not a purely kinematical function; it
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also depends on K2:

F3 =
1

2ωL3

[
−2F

3
+

1
F−1 +(1+KGNR)−1KF

]
, (2.4)

where K and F are respectively K2 and F2 multiplied by δ~k,~k′ . The matrix ωL3 is diagonal with

elements L3
√
~k2 +m2, and GNR is a regulated free non-relativistic propagator defined in Ref. [39].

In order to implement this formalism for the three-body system, one first needs to obtain
an analytic parameterization of K2 by interpolating the values obtained using the two-particle
quantization, as was done, for example, in Ref. [42] and reviewed in Sec. 2.1.2. Consequently, F3

in Eq. 2.4 would be also determined. After determining the three-body spectrum via lattice QCD,
by inputing the spectrum and F3 onto Eq. 2.3 one could then constrain Kdf,3. In their work, Hansen
and Sharpe, in addition to giving a detailed derivation of Eq. 2.3, they also demonstrate how this
determinant condition can be suitably truncated.

3. Three-point correlation functions

As discussed in the introduction, the determination of elastic and inelastic form factors via
lattice QCD is essential for our understanding in a wide range of experimentally observed (and
unobserved) processes. One way to obtain matrix elements of external current is to study the shift
in the spectrum of a system in the presence of an external field. A recent example of this method
was presented in this conference [54] and it was recently implemented in the determination of
magnetic moments of light nuclei via lattice QCD [55]. The advantage of this methodology is that
one avoids having to evaluate three-point functions, which in general are more computationally
challenging and costly. That being said, the vast majority of experimentally observed hadrons are
unstable under the strong interaction, and generalization of this framework for systems involving
two or more particles is not straightforward, e.g., see Ref. [56].

Alternative to introducing an external field, one can proceed to simply evaluate a three-point
correlation function involving an external current, Jλc(tc,−Q), inserted in time = tc with momen-
tum Q,

C(3)(x f − tc, tc− xi) = 〈0|O ′λ f
(x f ,P f )Jλc(tc,−Q)O†

λi
(y0,−Pi)|0〉 (3.1)

= ∑
ni,n f

e−Eλ f ,n f
(x f−tc)e−Eλi ,ni (tc−xi)〈0|O ′

λ f
(0,P f )|Eλ f ,n f ;L〉

×〈Eλ f ,n f ;L|Jλc(tc,−Q)|Eλi,ni ;L〉〈Eλi,ni ;L|O†
λi
(0,−Pi)|0〉. (3.2)

Here, λc labels all of the quantum numbers of the external current of interest. For systems where
Eλi,ni and Eλ f ,n f correspond to QCD stable states, one expects the finite volume matrix elements of
the external current, 〈Eλ f ,n f ;L|Jλc(tc,−Q)|Eλi,ni ;L〉, to be exponentially close to corresponding
infinite volume matrix element, after removing the momentum conserving delta-function. For
systems where either the initial or(and) final state is(are) unstable or loosely bound these matrix
elements states are expected to suffer of large finite volume effects. Therefore, prior to performing
these calculations one must find a mapping between finite volume matrix elements of external
current and the infinite volume matrix elements.
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3.1 1→ 2 transition amplitudes

The relationship between finite volume matrix elements and infinite volume physical observ-
ables is in a formally less mature state than the interpretation of the finite volume spectrum dis-
cussed in Sec. 2.1. The subtle relation between finite volume matrix elements and infinite volume
amplitudes was first addressed by Lellouch and Lüscher in the context of K → ππ decays [28].
Since their original work, their idea has been extended to increasingly complicated systems. Just
this year, two advances were made and presented in this conference. First, Agadjanov et al. demon-
strated how this framework can be implemented to study electromagnetic decays of baryonic reso-
nances via lattice QCD with arbitrary Q2, e.g., Nγ∗→ ∆→ Nπ [57].

The second development was by Hansen and Walker-Loud in collaboration with the author
of this review [24, 25]. References [24, 25] present a generic relation between matrix elements
of currents that couple one-particle and two-particle states to the corresponding infinite volume
transition amplitude, A . The only assumptions made in this work is that initial(final) state only
couples to one(two)-particle states and the individual particles involved have no intrinsic spin.
Otherwise, the particles can carry arbitrary momenta, the final two-particle states can be in a cubic
irrep, angular momenta are allowed mixed in accordance to symmetries of the system, in general
any number of two-particle states can go on-shell, the volume could be any rectangular prism with
arbitrary twisted boundary conditions.

The absolute value of the matrix elements of the external current can be written in terms of
the residue of the finite volume two-particle propagator at the n f th pole, Rλ f ,n f , and the transition
amplitude evaluated at that kinematic point, Aλ f ,n f ;λc . In general, Rλ f ,n f is a matrix in the space
of open channels and the in the space of angular momenta that couple to a two-particle state with
quantum numbers compactly labeled here by λ f . Rλ f ,n f depends on the spectrum and the K-matrix
of the two-body systems. Having obtained the spectrum, one can determine the K-matrix using the
two-body quantization conditions, Eq. 2.1, thereby determining Rλ f ,n f . For an explicit expression
of Rλ f ,n f see the aforementioned reference. Similarly, Aλ f ,n f ;λc is a column vector in this space.
Using this notation, one can show that the matrix elements satisfy

∣∣∣〈Eλ f ,n f ;L|Jλc(0,P f −Pi)|Eλi,0;L〉
∣∣∣=√Ni N f

2Eλi,0

√[
A †

λ f ,n f ;λc
Rλ f ,n f Aλ f ,n f ;λc

]
, (3.3)

where Ni and N f are the normalization of the initial and final states, respectively, in a finite volume.
References [24] chose to set these to one, but another common choice in the literature is to set
these equal to twice the respective energy. This expression allows one to determine the absolute
value of the transition amplitude. The strong phase associated with this amplitude can be directly
determined from the spectrum, using Eq. 2.1. Furthermore, the overall sign of the given transition
amplitude is not a physical observable, but the relative sign between different current is a physical
observable. One can also show that the ratio of matrix element of two distinct current, Jλc,1 and
Jλc,2, satisfies

〈Eλ f ,n f P f ;L|Jλc,1(0,P f −Pi)|Eλi,0Pi;L〉
〈Eλ f ,n f P f ;L|Jλ ′c,2(0,P f −Pi)|Eλi,0Pi;L〉

=
A †

λ f ,n f ;λ ′c,2
Rλ f ,n f Aλ f ,n f ;λc,1

A †
λ f ,n f ;λ ′c,2

Rλ f ,n f Aλ f ,n f ;λ ′c,2
. (3.4)
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From this it is clear that the relative sign between the matrix elements can help constrain the relative
sign between the transition amplitudes.

To this day, the only implementation of this formalism has been towards the study of K→ ππ

decays (e.g., see Refs. [58, 59, 60, 61, 62]). Lellouch and Lüscher first proved this was possible
assuming the final state is at rest. This restriction was later removed [29, 30]. This was then
extended to allow for two open channels in the final state, as in the case, for example, D→ ππ [33].
The result above compactly summarizes all of these scenarios, and it opens up the possibility of
a large number of new calculations discussed in Ref. [24]; some examples include ρ → πγ∗,B→
ρ + ``, and B→ K∗+ ``→ Kπ + ``

As mentioned above, this result assumes that the particle involved have no intrinsic spin. In
order to shed some light onto how systems with nonzero spin can be studied using this formalism,
Agadjanov et al. investigated what would be needed to determine the Nγ∗→ ∆→ Nπ form factors
via lattice QCD [57]. In their work, they assumed the final two-particle state to be at rest and
ignored effects due to partial wave mixing. Nevertheless, they demonstrate that infinite volume
transition amplitudes, or equivalently form factors, for this process can in principal be determined.
In the limits considered in the aforementioned reference, the result agree with Eq. 3.3.

3.2 Elastic/inelastic form factors of unstable states

Being able to generalize this framework for 2→ 2 would be a significant first step towards
being able to study, for example, parity violation in proton-proton scattering or form factors of
hadronic resonances. Yet, the generalization of this formalism is challenging. Currently, no
parametrization-independent relation between the finite volume matrix elements and infinite vol-
ume amplitudes has been found, e.g., see Refs. [56, 43, 34].

3.3 Long range contribution to electroweak processes via lattice QCD

Lattice QCD calculations of weak decays used to determine the CKM matrix element, have
reached a level of precision (see Ref. [63] for a recent review on the topic) where long range
contributions to these must be incorporated. Two prime examples where these effects are expected
to play an important role are the KL−KS mass splitting, ∆mK , and the CP violating K0− K̄0 mixing
parameter, εK . For the KL−KS mass splitting, these contributions can be understood as a weak
current annihilating the incoming kaon state and creating a two or three pion state that propagates
for arbitrary long distances and is then turned onto a final kaon via the weak interaction. Performing
this calculation in a finite volume would result in power-law finite volume artifacts associated with
the intermediate two/three pion states going on-shell and sampling the boundaries of the volume.
Therefore, the challenges associated with the studies of transition amplitudes discussed above,
are closely related to those regarding the studies of nonlocal contribution to electroweak matrix
elements. The first formal attempts towards estimating these large volume have been recently
performed [64, 65]. In these works, it is assumed that the three pion contribution can be ignored
and that the only contributing partial wave is the S-wave. Within these approximations, the authors
find that he finite volume KL−KS mass splitting, ∆mL

K , can be written in terms of the infinite volume
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splitting, ∆mK , up to an additive finite volume function,

∆mL
K = ∆mK−2π 〈K̄0;L|HW,L|ππ,n0;L〉〈ππ,n0;L|HW,L|K̄0;L〉

[
cot(πh)

∂h
∂E

]∣∣∣∣
E=mK

, (3.5)

where h(E,L) ≡ φ(E,L) + δ0,0(E), φ is a kinematic function related to the Zeta functions [27]
and δ0,0 is the isosinglet, S-wave ππ phase shift. HW,L is the finite volume weak Hamiltonian,
and |ππ,n0;L〉 denotes the ground state “ππ” ground state evaluated at the kaon mass. Therefore,
in order to reliably determine ∆mK one must first determine the ππ spectrum and use Eq. 2.1 to
constrain δ0,0 and its derivative. Furthermore, one would need to determine 〈K̄0;L|HW,L|ππ,n0;L〉
and 〈ππ,n0;L|HW,L|K̄0;L〉.

Currently there are two lattice calculations of the long distance contribution to KL−KS mass
splitting have been performed 4. The most recent used mπ = 330 MeV, mK = 575 MeV, a lat-
tice spacing of 1/a = 1.729(28) GeV and a volume of 243× 64 in lattice units [67]. For these
lattices, the kaon resides below the two pion threshold. From Eq. 3.5 one can show that the fi-
nite volume effects are expected to be exponentially suppressed with the volume and can there-
fore be safely neglected. For these values of the masses and lattice spacing, Bai et al. obtain
∆mK = 3.19(41)(96)× 10−12 MeV , which is surprisingly good agreement with the experimental
value of ∆mK = 3.483(6)×10−12 MeV [68]. 5 As calculations are performed closer to the physical
point, the finite volume effects addressed by Eq. 3.5 will need to be taken into account and even
the effects due to intermediate three pion states will need to be considered. This would require first
obtaining the generalization of Eq. 3.5 that incorporate intermediate three-particle states as dictated
by the three-body formalism review in Sec. 2.2 or its extensions to come.

4. Outlook of the field

Lattice QCD has proven to be a remarkably powerful tool to study low to medium energy
hadronic physics. Yet the power of this tool strongly depends on our capability to understand
its numerical output. As discussed extensively here, the interpretation of observables involving
few-body systems is a subtle one. There has been a great deal of progress towards developing
the “theoretical infrastructure” to be able to perform lattice QCD calculations of said systems,
and there is a “universal” picture emerging for relating finite volume quantities to the physical
observables.

At this point in time, it is fair to say that following are observables that are formally and
rigorously understood: two-body coupled-channel spectrum with arbitrary spin and 1→ 2 matrix
elements without intrinsic spin. Meanwhile the following observables are just now beginning to be
understood:

1. Finite volume spectrum involving three or more particles,
2. matrix elements for 1→ 2, 2→ 2, 1→ 3, . . . processes with arbitrary spin,
3. long range contributions to matrix elements involving two or more intermediate particles,
4. non-perturbative QED effects.

4The first determination was performed using mπ ∼ 421 MeV [66].
5For a recent exploration of the systematics associated with this calculation at mπ ∼ 171 MeV see Ref. [69].
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It is safe to expect a great deal more of formal developments on these and many more few-body
quantities. In closing, I would like to re-emphasize that we are currently developing a user manual
of sorts that will allow us to extend the capabilities of Lattice QCD toward more interesting and
complex systems. As we explore the frontier of the field we should not expect precision but rather
we should expect the unexpected. 6
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