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Isospin symmetry is explicitly broken in the Standard Model by the mass and electric charge
of the up and down quarks. These effects represent a perturbation of hadronic amplitudes at
the percent level. Although these contributions are small, they play a crucial role in hadronic
and nuclear physics. Moreover, as lattice computations are becoming increasingly precise, it
is becoming more and more important to include these effects in numerical simulations. We
summarize here how to properly define QCD and QED on a finite and discrete space-time so that
isospin corrections to hadronic observables can be computed ab-initio and we review the main
results on the isospin corrections to the hadron spectrum. We mainly focus on the recent work
going beyond the electro-quenched approximation.
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1. Motivation

In an isospin symmetric world, the up (u) and down (d) quarks are identical particles. It is
known (cf. Table 1) than in Nature isospin symmetry is explicitly broken by the non-zero mass and
electric charge differences of the u and d quarks. However, the effects of this breaking are expected
to be small relative to typical strong interaction energies such as hadron masses. Indeed, it is clear
that the light quark mass mass difference δm=mu−md represents one percent or less of any typical
QCD energy scale. Similarly, the strength of the electromagnetic (EM) interaction relatively to the
strong one is essentially given at low energy by the fine structure constant α ' 0.007. For those
reasons we can reasonably state that, for observables with a non-vanishing isospin symmetric part,
isospin symmetry is a good approximation of reality with an O(1%) relative error.

Nevertheless, it is interesting to note that these small isospin breaking corrections are crucial
to describe the structure of atomic matter in the Universe. Indeed, one particular effect of isospin
symmetry breaking is the mass splitting between the proton (p) and the neutron (n). This mass
difference is known experimentally with an impressive accuracy [1]:

∆MN = Mn−Mp = 1.2933322(4) MeV (1.1)

The sign of this splitting makes the proton and the hydrogen atom stable physical states. Also, the
size of ∆MN determine the phase space volume for the neutron β -decay n→ p+ e−+νe. At early
times of the Universe (t ∼ 1 s and T ∼ 1 MeV) and under standard assumptions1, the existence of
β -decay allows to infer that the ratio of the number of neutrons and protons is approximatively
equal to:

nn

np
' exp

(
∆MN

T

)
(1.2)

This ratio is one important initial conditions of Big Bang Nucleosynthesis. Also, in our actual
Universe, β -decay and its inverse process are known to be responsible for the generation of a large
majority of the stable nuclides chart though nuclear transmutation. Even if the nucleon isospin mass
splitting is a well known quantity, predicting it from first principles is a difficult problem because
of the complex non-perturbative interactions of quarks inside the nucleon. The proton carries an
additional EM self-energy compared to the neutron, so just from QED one would expect to have
∆MN < 0. However, the fact that the experimental value of ∆MN has the opposite sign suggests that
the strong isospin breaking effects are competing against the EM effects with a larger magnitude.
This would mean that an important part of the structure of nuclear matter as we know it relies on

u d
Mass (MeV) [1] 2.3

(
+0.7
−0.5

)
4.8
(
+0.7
−0.3

)
Charge 2

3 e −1
3 e

Table 1: Physical properties of the up and down quarks.

1The neutrino number density nν/nγ is assumed to have the order of the baryon density number which is very small.
This assumption is not valid anymore in some new physics scenarios but even in these hypothetical cases nn/np depends
strongly on ∆MN .
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a subtle cancellation between the small EM and strong breaking effects of isospin symmetry in the
nucleon system. Therefore, it is fundamental to have a theoretical understanding of the nucleon
isospin mass splitting.

Considering that isospin breaking effects in the hadron mass spectrum are generally measured
quite precisely, it is also interesting to understand how one can use this information to deduce the
masses of the individual u and d quark masses. For example, it is important to know if mu = 0
could be a realistic solution to the strong CP problem. While recently (cf. the FLAG review [2])
considerable progress has been made in determining precisely the average up-down quark mass
mud from first principles, such a computation is still missing for the individual masses. Because
the kaon (K) is a pseudo-Goldstone boson of chiral symmetry breaking, the isospin mass splitting
∆M2

K = M2
K+−M2

K0 is very sensitive to δm. But in order to extract δm, one has to understand how
to subtract the EM contribution to this splitting. One well known result in this direction is Dashen’s
theorem [3] which states that, in the SU(3) chiral limit, the EM Kaon splitting is equal to the EM
pion (π) splitting:

∆QEDM2
K = ∆QEDM2

π +O(αms) (1.3)

This result is important because it is known [2] that with good accuracy, ∆QEDM2
π ' ∆M2

π . The
remaining question is: how large are the O(αms) corrections in (1.3)? One way to quantify these
corrections is to consider the dimensionless quantity ε defined in [2] as follows:

ε =
∆QEDM2

K−∆QEDM2
π

∆M2
π

(1.4)

This quantity is constructed such that it vanishes in the SU(3) chiral limit. There were several
attempts in the 1990s to compute these corrections analytically from effective theories which leaded
to controversial results. It makes this quantity a good target for a lattice calculation.

The problems presented in this section, and more generally in any computation of isospin
corrections to low-energy QCD observables, are difficult to solve because of the highly non-
perturbative behavior of the strong interaction in this regime. It has been shown [2] that it is now
possible to predict fundamental isospin symmetric QCD observables through lattice QCD simula-
tions with a full control over the method’s uncertainties. It is then reasonable to think that lattice
simulations could be a reliable way to understand and compute isospin breaking effects. Moreover,
besides the physical interest of these effects, actual lattice calculations are reaching a sub-percent
precision on several standard observables and the assumption of isospin symmetry is becoming the
dominant source of systematic uncertainty.

2. Lattice QCD+QED

In this section we review how to add EM interactions to lattice simulations. As we will see,
the main difficulties comes from the singular infrared structure of QED. We explain a possible way
to define QED in a finite volume and what are the associated finite-size effects. We then discuss
the discretization of the theory and the simulation techniques used so far.
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2.1 QCD+QED in a finite volume

Let us consider a diagrammatic contribution D to a correlation function featuring a photon
loop (e.g. the 1-loop part of the electron EM self-energy). In infinite volume, D will have the
following form:

D∞ =
∫ d4k

(2π)4
1
k2 f (k, p1, . . . , pn) (2.1)

The integral (2.1) may be ultraviolet (UV) divergent, which can be dealt with through renormal-
ization. The photon pole at k2 = 0 can also generate infrared (IR) divergences. However, (2.1) is
not mathematically undefined per se, the undefined k2 = 0 value of the integrand is just a point
(set of measure 0) and can be ignored. Moreover, it is known that in some cases (e.g. the on-shell
self-energy of a particle), this singularity is integrable. In a finite volume with temporal extent T
and spatial extent L, momenta become quantized in a way depending on the choice of boundary
conditions. If one chooses periodic boundary conditions for the photon field, then the contribution
(2.1) becomes:

D(T,L) =
1

T L3 ∑
k∈BZ(T,L)

1
k2 f (k, p1, . . . , pn) (2.2)

where:
BZ(T,L) =

2π

T
Z× 2π

L
Z3 (2.3)

Now the expression (2.2) has an isolated, undefined contribution coming from the photon pole
which cannot be summed in any way. As mentioned in [4, 5], this singularity is classically related
to the fact that Gauss’ law does not authorize a net charge to exist in a finite, periodic volume.

2.1.1 Photon zero-mode subtraction schemes

If one wants to keep periodic boundary conditions on the photon field, one possible solution
to deal with the zero-mode singularity is to remove a subset of mode containing 0 from the finite-
volume degrees of freedom. This will of course alter the physics in finite volume, but if the chosen
subset converges in the infinite volume limit to a set of measure 0 then naively the physics in infinite
volume remains unchanged. This is only a necessary condition, in principle one needs to check that
the subtraction procedure does not accidentally couple the IR and UV structure of the theory which
could introduce a complicated volume-dependent renormalization of the theory.

Naively, the most minimal zero-mode subtraction procedure is to set the k = 0 mode of the
photon field to 0. Following [6], we name the resulting theory QEDTL. This finite-volume pre-
scription has been used for numerical calculations in [7, 8, 9]. Although this scheme is simple, it
introduces some strong finite-volume effects which can be hard to control. Indeed, considering the
T →+∞ limit at fixed L of the QEDTL version of (2.2), one obtains:

DQEDTL(T,L) =
1

T L3 ∑
k∈BZ(T,L)

k 6=0

f (k, p1, . . . , pn) −→
T→+∞

1
L3

∫ dk0

2π
∑

k∈BZ(L)
f (k, p1, . . . , pn) (2.4)

where BZ(L) = 2π

L Z3. Because it is one-dimensional, the integral in (2.4) might be IR divergent
even in cases where its four-dimensional version converges. As an example, finite-volume effects
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on the 1-loop mass correction in spinor QEDTL were computed in [6]:

mQEDTL(T,L) =
T,L→+∞

m
{

1−q2
α

[
κ

2mL

(
1+

2
mL

[
1− π

2κ

T
L

])
− 3π

(mL)3

[
1− coth(mT )

2

]
− 3π

2(mL)4
L
T

]}
(2.5)

where m is the infinite volume mass, q is the charge in units of e and κ = 2.83729 . . . is a known
numerical constant. This expansion is exact up to corrections that decay exponentially in the in-
finite volume limit. In this example we explicitly see a term proportional to T

L3 which represents
the IR divergence related to the limit (2.4). In conclusion, it appears that QEDTL has two cumber-
some properties. Firstly, the infinite-volume limit has to be taken with special care (i.e. by keeping
T
L3 bounded) and secondly this extrapolation depends on the aspect ratio T

L . As discussed in [6],
the singularity of QEDTL in the large T limit can be explained in the following way. The photon
zero-mode removal can be implement by adding a non-local term in the Lagrangian of the theory.
This term couples values of the electromagnetic potential on different time-slices, breaking the
reflection positivity of the action. So strictly speaking QEDTL does not admit a quantum mechan-
ical description and the divergence in T is a symptom of the lack of a thermodynamic limit. This
singular behavior has been discovered independently by the MILC collaboration [10].

An alternative to QEDTL is to remove all spatial zero-modes, i.e. to set to zero all the photon
modes k with k = 0. This scheme is inspired from [11] where QED is formulated in a finite
spatial volume directly with an infinite temporal dimension. We denote this prescription QEDL [6].
Because it does not couple field values on different time-slices, QEDL has positive reflexivity and
therefore a correct particle physics interpretation. In this theory, the finite-volume effects on the
1-loop mass correction of a spin 1

2 particle are given by [6]:

mQEDL(T,L) =
T,L→+∞

m
{

1−q2
α

[
κ

2mL

(
1+

2
mL

)
− 3π

(mL)3

]}
(2.6)

Compared to (2.5), this relation is now completely independent from the aspect ratio T
L . QEDL has

been used in electro-quenched simulations in [12] and in full simulations in [6].
The mass corrections in QEDL and QEDTL were compared to numerical quenched QED

(which is exact at the 1-loop) simulations in [6] and perfect agreement is found between the simu-
lations, (2.5) and (2.6). These results are summarized in Figure 1.

2.1.2 Finite-volume effects on hadron masses

All the previous statements were made for elementary particles which interact only through
QED. Here we review how to generalize this discussion for hadrons, i.e. composite bound states of
the strong interaction. All of the work presented here are computations performed in QEDL with
an infinite time dimension.

To study finite-volume effects on hadrons masses, one possible approach is to use low-energy
effective theories of the strong interaction coupled to QED. This was done first for meson masses in
the context of SU(3) partially-quenched chiral perturbation theory in [11]. The results of that work
were studied numerically and generalized to an SU(2) plus heavy kaons theory in [12]. EM finite-
volume corrections to meson, baryon, nuclei masses and to the hadronic vacuum polarization were

5
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this work χ2/dof= 1.4

NNLO Ref[S3] χ2/dof= 15

QEDTL,T/L=8
QEDTL,T/L=3
QEDTL,T/L=2

QEDL,T=64

ref. [5]

Figure 1: Finite-volume corrections to an elementary fermion mass in QED. The black (resp. red) points
represent QEDTL (resp. QEDL) quenched QED simulations (which is exact at O(α)). The black (resp. red)
curves represent the theoretical prediction (2.5) (resp. (2.6)). The only fit parameter is the infinite-volume
mass. The dashed blue line is the prediction from [5], the disagreement between this formula and the data is
commented in section 2.1.2.

studied in [5] using non-relativistic effective theories. In this context, the finite-volume corrections
appear as the elementary particle ones plus terms depending on the structure of the particle (radius,
polarizabilities, . . . ).

However, there is a disagreement between the point-like limit of [5] and the QED predic-
tion (2.6) concerning the fermion mass correction. The difference is a relative factor of 2 in the
O[α/(mL)3] correction. The QED simulations presented in Figure 1 strongly favor (2.6). An ex-
planation for this discrepancy has been recently proposed in [13]. In the non-relativistic limit, the
particle and antiparticle degrees of freedom decouple and therefore in non-relativistic theories one
does not expect the antiparticle modes to contribute to the particle mass corrections. However, as
pointed out in [13], these modes contribute through the subtraction of the photon zero-modes in
QEDL. Once properly added, this residual fermion-antifermion interaction generates a O[α/(mL)3]

finite-volume correction which solves exactly the discrepancy with (2.6).

The structure of finite-volume corrections to hadron masses was also studied beyond the effec-
tive theory level [6]. In that work it is confirmed that the two first orders of the finite-volume expan-
sion in 1

mL are universal and identical to the pure QED case. These terms are determined by gauge
invariance, through the constraints on the electromagnetic form factors provided by the Ward-
Takahashi identities, and follow from the analyticity properties of 1-particle irreducible Green’s
functions in the relevant quantum field theories. The structure contributions only enter at least at
order O[α/(mL)3] which can be seen explicitly for the effective theories presented in [11, 12, 5].
The universality of the two first orders is an important information as it allows to impose these

6
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corrections analytically in lattice data analyses without introducing any model dependence.

2.2 Lattice QED

There are essentially two approaches to discretize QED: a naive, non-compact action where
the gauge potential Aµ is still the field variable or a compact Wilson action similar to lattice QCD.
By naive discretization we mean that the lattice action is defined as follows:

S[Aµ ] =
a4

4 ∑
x,µ,ν

[∂µAν(x)−∂νAµ(x)]2 (2.7)

where a is the lattice spacing and ∂µ is some first-order finite-difference operator. So far, except
the starting project of the MILC collaboration [14], only the non-compact action has been used in
the context of lattice QCD+QED simulations. One of the main motivations in making this choice
comes from the fact that the non-compact action is free and still gauge-invariant2. On the other
hand, the compact QED action introduces photon-photon interactions which are a pure discretiza-
tion effect. However, there is in principle no conceptual problem in using compact QED. In both
cases (although it is mandatory for the non-compact action) gauge fixing needs to be considered.
Indeed, with electromagnetic interactions one might be interested in gauge variant amplitudes in-
volving charged particles. In the non-compact case, gauge fixing is straightforward for Coulomb
and Feynman gauges [6]. Moreover, as explained in [6], the non-compact action offers an in-
teresting opportunity for Fourier acceleration of the hybrid Monte-Carlo (HMC) algorithm. The
argument goes as follows: because the pure gauge theory is free, one can find a distribution for the
HMC momenta which exactly cancels any autocorrelation in the Markov chain. Of course this is
not correct anymore once quarks and gluons are coupled to the system. However, because of the
weak coupling of QED it has been observed that using this particular momentum distribution still
considerably reduces the autocorrelations coming from EM interactions.

2.3 QCD+QED simulations

Up to now, essentially two approaches have been used to perform lattice QCD+QED simula-
tions. On the one hand, one can use the so-called electro-quenched approximation which consists
in neglecting the EM contribution to the fermionic determinant (i.e. the sea quarks are electrically
neutral). This approach is more cost effective but it is not possible to control reliably the quenching
effects. On the other hand, one can consider the full theory. In the past couples of year several
groups worked or started working on such simulations. We summarize below the effort done in
both approaches.

2.3.1 Electro-quenched approximation

From the Monte-Carlo simulation point of view, the coupling of quenched QED (qQED) to
QCD is fairly straightforward. For a given lattice QCD gauge configuration, one generates a pure
gauge QED configuration (which is simply Gaussian distributed for the non-compact lattice ac-
tion). Then the QED field is used to phase the QCD gauge links in the lattice Dirac operator
inverted to obtain the valence quark propagators. Another approach has been used in [8]: in that

2this is not the case for non-compact lattice QCD [15]
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work the leading QED corrections are expressed as pure QCD expectation values in a perturbation
theory fashion. In that framework, the electro-quenched approximation consist in neglecting the
disconnected quark diagrams where the EM currents are self-contracted.

It is easy to show that the missing contributions to the fermionic determinant are suppressed
by both the number of colors and SU(3) flavor symmetry. Using this fact and naive dimensional
analysis, a quantity computed in the electro-quenched approximation is expected to suffer from a
O(10%) quenching effect relatively to its electromagnetic corrections [9]. Also, partially quenched
chiral perturbation theory allows to provide estimations consistent with the dimensional one for the
light meson mass splittings [16, 17].

A summary of the different lattice QCD+qQED simulation projects can be found in [18].
Apart from a slight update from the MILC group [10], the actual situation is essentially identical
concerning electro-quenched simulations.

2.3.2 Full QCD+QED simulations

There are essentially three possible ways to compute full QCD+QED correlation functions.
Firstly, it is possible to compute directly the ratio of the QCD+QED to QCD fermionic determinant
for each QCD configuration. These ratios can be then used to re-weight electro-quenched data.
This technique was first proposed in [19] and applied in exploratory calculations [20, 21]. We see
one major limitation of re-weighting techniques applied to QCD+QED: as the volume gets larger,
the computational cost of the weights increases rapidly and the signal over noise ratio decreases.
As discussed in section 2.1, it is important to reach large physical volumes in order to control the
large finite-volume effects generated by QED.

A second approach already mentioned in the previous section is to perform a perturbative
expansion in α and express the QED correction as pure QCD observables. The determinant contri-
bution then appears as disconnected quark diagrams. The computation of these diagrams was never
attempted in the context of computing EM corrections to hadronic amplitudes. However, identical
diagrams contribute in other problems and they appear to be extremely difficult to compute. One
can for example look at the recent study by the Mainz group [22] of the disconnected contribu-
tions to the hadronic vacuum polarization. This approach has the advantage of isolating specific
perturbative contributions which can be useful for the control and understanding of IR divergences
in hadronic processes [23].

Finally, one can generate new field configurations including both QCD and QED actions in the
HMC process. Both QCDSF [24, 25] and MILC [14] have started simulations and BMWc achieved
the first complete simulation program [6]. The specificities of each of the projects mentioned in
this section is summarized in Table 2.

3. Isospin corrections to the hadron spectrum

In this section we review the different results concerning the isospin breaking corrections to the
hadron spectrum. We first discuss the ambiguity of the separation of strong and EM contributions.
Then we present the results concerning Dashen’s theorem and quark masses and finally the hadron
mass splittings.

8
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collaboration RBC-UKQCD PACS-CS QCDSF-UKQCD BMWc
references [20] [21] [24, 25] [6]

fermion action domain wall Wilson Wilson Wilson
N f 2+1 1+1+1 1+1+1 1+1+1+1

method re-weighting re-weighting HMC HMC
min(Mπ) (MeV) 420 135 250 195

a (fm) 0.11 0.09 0.08 0.06–0.10
Na 1 1 1 4

L (fm) 1.8 2.9 1.9–2.6 2.1–8.3
Nvol. 1 1 2 11

Table 2: Summary of full lattice QCD+QED simulation programs. The MILC program [14] is too prelim-
inary to know its specifications and was not included in this table. The first line is the fermion action used.
The second line is the number of flavors used in the gauge configuration generation. The third line gives the
simulation method used. The forth line indicates the minimum pion mass reached. The fifth line is the range
of lattice spacing used and the sixth line indicates their number. Similarly, the seventh and eighth lines are
respectively the range and the number of lattice spatial extents used.

3.1 Separation of QCD and QED contributions

In all present work, only the leading isospin corrections to hadron masses are considered.
These corrections can be written as follows:

∆MX = αAX +δmBX +O(α2,αδm,δm2) (3.1)

where ∆MX is a given isospin mass splitting and δm = mu−md . Then it is tempting to simply
define the leading-order QED and QCD parts of the splitting:

∆QEDMX = αAX and ∆QCDMX = δmBX (3.2)

However, on has to be careful because of the following ambiguity: α and δm depend on each other
through radiative corrections. Moreover, mu and md individually depend on α with a different co-
efficient because of the difference of their electric charges. Therefore, this ambiguity cannot be
directly absorbed in higher-order isospin corrections. To make properly this QCD/QED separa-
tion, one has to provide a prescription that defines the δm = 0 point. The difference between two
prescriptions will be O(mudα,mudδm) up to higher-order isospin corrections. Thus, with physical
quark masses where δm ' mud this discrepancy can be considered as higher-order isospin correc-
tions. So as soon as a result is produced at the physical value of mud and δm, it is reasonable to
consider that the separation (3.1) is effectively unambiguous up to higher-order O(1%) corrections.

Several prescriptions to define the δm = 0 point have been proposed in previous works. The
most conceptually straightforward scheme is to renormalize the light quark masses in a given
scheme (e.g. MS or RI-MOM) at a given scale and to consistently express every quantity as a
function of these renormalized masses. This prescription was used in [26, 12, 8]. Because renor-
malized quark masses can be difficult to compute, it is also interesting to consider prescriptions

9
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based on hadron masses. In [9], δm was replaced by the mass squared difference between the
connected uu and dd mesons ∆M2 = M2

uu−M2
dd

. Is it possible to show in partially-quenched chiral
perturbation theory [16] that for physical quark masses, ∆M2 is directly proportional to δm up to
the O(1%) higher-order corrections. In the later work [6] from the same collaboration, the pre-
scription ∆QEDMΣ = 0 was used, i.e. the Σ+−Σ− mass splitting is assumed to be proportional to
δm. If these particles would be point-like, one would have ∆QEDMΣ = 0 exactly. The authors of
[6] found ∆QEDMΣ statistically consistent with 0 and no more than 0.2 MeV with ∆M2 = 0.

3.2 Dashen’s theorem and light quark masses

Dashen’s theorem corrections and individual up and down quark masses have been computed
reliably only in the electro-quenched approximation. All existing results on Dashen’s theorem
correction ε defined in (1.4) are presented in Figure 2. Two interesting comments can be make
regarding these results. Firstly, although lattice results are still dominated by systematic uncertain-
ties and suffer from an uncontrolled electro-quenching error, they look consistently spread around
a common value. This contrasts significantly with the 1990’s phenomenological determinations
of this quantity. Secondly, the lattice results seems to favor a rather large O(70%) violation of
Dashen’s theorem.

0 0.5 1 1.5 2

ε

Maltman and Kotchan [27] (1990)
Donoghue et al. [28] (1993)
Bijnens [29] (1993)
Baur and Urech [30] (1996)
Bijnens and Prades [31] (1997)
Donoghue and Perez [32] (1997)
Gao et al. [33] (1997)
Moussallam [34] (1997)
Duncan et al. [7] (1996) (EQ, quenched)
RBC-UKQCD [26] (2007) (EQ)
RBC-UKQCD [12] (2010) (EQ)
RM123 [8] (2013) (EQ)
BMWc [35] (2014) (EQ, preliminary)
MILC [10] (EQ, preliminary)

Figure 2: Summary of the determination of Dashen’s theorem violation ε defined in (1.4). The green points
represents analytical calculations from effective theory and the blue points results from lattice simulations.
For the lattice results, the blue error bar is statistical and the red is systematic. “EQ” stands for electro-
quenched. Results are presented in chronological order.

Regarding the light quark mass ratio mu/md , the lattice determinations of this number are sum-
marized in Figure 3. Although there is a slight tension between the two most recent results [10, 35],
they both agree nicely with the values from the PDG [1] and FLAG [2] reviews. The only full
QCD+QED result from PACS-CS [21] seems to deviate significantly from other determinations.
This number is the result of an exploratory calculation using re-weighting techniques and has un-
known systematic errors. We believe that this effect is more a systematic effect rather than an

10
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indication of a large see quark EM contribution. It is interesting to notice that all these results
exclude strongly the mu = 0 solution to the strong CP problem.

mu/md

PDG [1]
FLAG [2]

0.4 0.5 0.6 0.7

RBC-UKQCD [12] (2010) (EQ)

PACS-CS [21] (2012)

RM123 [8] (2013) (EQ)

BMWc [35] (2014) (EQ, preliminary)

MILC [10] (EQ, preliminary)

Figure 3: Summary of the calculations of mu/md light quark mass ratio. Plotting conventions are identical
to the one used in Figure 2.

3.3 Isospin mass splittings in the hadron spectrum

The main novelty concerning the calculation of the isospin correction to the hadron spectrum
is the high-precision determination of isospin mass splittings of the octet baryons, the D meson
and the newly discovered Ξcc, from the BMWc group [6]. These splittings where computed using
full QCD+QED simulations including an active charm quark in the sea. A summary of these
results can be found in Figure 4. The splittings obtained in this work are in very good agreement
with experimental values. It is interesting to notice that the Ξ baryon splitting is obtained with a
precision higher than the experimental measurement. Moreover, the unknown Ξcc splitting needed
by charm spectrum experiments3 is predicted accurately.

The QCDSF-UKQCD collaboration also aim at studying isospin corrections to the octet baryon
spectrum. This group have started generating full QCD+QED gauge ensembles [24, 25] to deter-
mine the corrections to the spectrum. The analysis is performed using the same technique based
on SU(3) flavor symmetry as used in their previous pure QCD work [36]. The same collaboration
also achieved the first lattice determination of the mixing between Σ0 and Λ0 baryons [37] which
is authorized once isospin symmetry is broken. They obtained the mass splitting between the two
particles with a precision of O(10%), in good agreement with the experimental value.

Finally we summarize the theoretical determination of the nucleon splitting, including the
QCD and QED separation, in Figure 5. The most recent full QCD+QED results [6, 25] are in very
good agreement and indicate that the crucial value of the nucleon mass splitting is indeed the result
of a subtle cancellation between the QCD and QED contributions.

3cf. e.g. http://www.ectstar.eu/sites/www.ectstar.eu/files/talks/after-jurgen-feb13.pdf
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Figure 4: Summary of the results from [6]. ∆CG = ∆MN −∆MΣ +∆MΞ is the correction to the Coleman-
Glashow relation.

4. Conclusion and perspective

Lattice QCD simulations in the isospin limit are reaching a precision of O(1%) and below on
important observables and isospin breaking effects are becoming the dominant source of system-
atic uncertainty. Therefore, it is becoming crucial to introduce isospin breaking effects in lattice
simulation in order to provide more stringent theoretical constraints on the Standard Model. The
main challenge in this task is the inclusion of EM interactions.

The difficulty with QED comes from the IR singular structure of the theory. Defining correctly
the theory in a box is non-trivial for several reasons. Firstly, momentum quantization can introduce
hard singularities coming from the photon field zero-mode if one uses periodic boundary condi-
tions. Subtracting the zero-mode of the field is a possible solution. However, fixing the zero-mode
constitutes a non-local constraint on the theory which can break some important properties such
as reflection positivity. It is shown in [6] that the zero-mode subtraction proposed by Hayakawa
& Uno [11] has a correct quantum mechanical interpretation. Beyond the zero-mode subtraction,
QED in a finite volume suffers from large, power-like finite-size effects because of the long-range
of the interaction. These effects are now well understood for hadron masses. The two first orders
in the infinite-volume expansion are entirely determined by gauge invariance and can be computed
analytically [6, 5]. Several effective theory descriptions of the higher-order, structure dependent
corrections have been worked out [11, 12, 5, 13].

In its recent work, the BMWc group [6] achieved the first complete lattice calculation featur-
ing full QCD and QED interactions, an active sea charm quark and a full control over the different
sources of uncertainty. The corrections to the baryon octet and charm spectrum are obtained pre-
cisely, in good agreement with experimental measurements. These simulations represent an impor-
tant step toward fully non-perturbative, high precision, predictions of Standard Model observables.
The corrections to the light meson spectrum, necessary to determine the individual up and down

12



P
o
S
(
L
A
T
T
I
C
E
2
0
1
4
)
0
1
3

Inclusion of isospin breaking effects in lattice simulations Antonin Portelli

(M
n
−

M
p)

Q
E

D
(M

eV
)

(Mn−Mp)QCD (MeV)

Gasser and Leutwyler [38] (1982)
Walker-Loud et al. [39] (2012)
NPLQCD [40] (2007)
QCDSF [36] (2012)
RM123 [8] (2013)
Shanahan et al. [41] (2013)
no β -decay
experiment
RBC-UKQCD [12] (2010) (EQ)
BMWc [9] (2013) (EQ)
BMWc [6] (2015)
QCDSF [25] (2014) (preliminary)

-2.5

-2

-1.5

-1

-0.5

0

1 1.5 2 2.5 3 3.5 4 4.5

Figure 5: Review of the theoretical determinations of the nucleon mass splitting. Results represented by a
band correspond to works where only the QCD or QED contribution has been determined. Where possible,
error bars are represent statistical and systematic uncertainties. The “no β -decay” region is defined by
Mn−Mp < me where me is the electron mass. “EQ” stands for electro-quenched.

light quark masses are still known only through the electro-quenched approximation.

It is now important to consider more complex quantities than hadron masses. Adding isospin
breaking effects to the determination of hadronic decay widths is crucial to obtain high precision
constraints on the flavor structure of the Standard Model (e.g. through sub-percent determinations
of the CKM matrix coefficients). With EM interactions, matrix elements are significantly harder
to determine than energy levels. Indeed, such quantity can feature IR divergences that are phys-
ically cancelled by the addition of real soft photons in the final state. Recently, a proposal has
been made [23] to deal with such divergences in the case of meson decays. Also, QCD+QED
simulations can be used to perform non-perturbative computation of the hadronic corrections to
the muon anomalous magnetic moment [42]. This quantity features an interesting discrepancy be-
tween theory and experiment and it is important to reinforce the theoretical prediction to support
the experimental effort.
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