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1. Introduction

Quark masses are fundamental parameters appearing in the QCD lagrangian, and as such they
cannot be predicted by the theory. Instead, they are extracted from a comparison of theoretical
expressions with experimentally measured values of various physical observables. Theories beyond
the Standard Model, aiming at the grand unification of fundamental interactions and based on a
specific gauge group, also predict the symmetry pattern amongst various Yukawa couplings which
then translates into equalities amongst ratios of various fermion masses. The fundamental gauge
group is then assumed to be acceptable as long as the theoretical ratios among quark/lepton masses
agree with actual values. It is therefore of fundamental importance to reliably define and accurately
determine the quark masses. On the practical side, quark masses decisively enter the theoretical
expressions for a vast number of physical processes so that their more accurate values significantly
improve the theoretical precision.

In that respect lattice QCD has played the essential role over the past two decades, and nowa-
days the values of the quark mass and αs(µ) are more and more dominated by the results from
numerical simulations on the lattice. 1

It is of crucial importance to properly define the quark mass. In pertutbation field theory
the mass can be defined as a pole of the propagator. Such a definition, known as the pole quark
mass, is a purely perturbative concept and suffers from infrared ambiguities known as renormalons.
Non-perturbatively, however, the quark pole mass cannot be defined since the renormalised quark
propagator has no distinct pole due to confinement in QCD.

The purpose of this review is to present an updated comparison of different determinations of
the quark masses computed by means of numerical simulations of QCD on the lattice. As far as the
light quark masses are concerned, most of the material has already been discussed in great detail
in the FLAG review [1]. Here we only update those results and focus on a discussion of the mass
difference md−mu, for which results have been recently published. Most of this review is devoted
to the lattice QCD determination of the heavy quark masses, a subject that has not been discussed
in Ref. [1].

The values of bare parameters in the Lagrangian depend on the adopted regularisation. A
meaningful comparison of various determinations of the quark mass values can be made only in a
specific renormalisation scheme and at a specific renormalisation scale. It is customary to quote
quark masses in the MS scheme. The referential scale is µ = 2 GeV, which is expected to be large
enough to make a parturbative matching between the MS and a non-perturbative renormalization
scheme (suitable for lattice studies) reliable, and to be small enough with respect to the hard lattice
cut-off scale. With more and more simulations performed at very fine lattice spacings the referential
scale is often pushed to µ = 3 GeV and will be pushed even higher. One should also stress that
the choice of MS as a reference renormalisation scheme is also made when comparing lattice
results obtained by using different regularization schemes. That step is still widely adopted but
is in principle unnecessary since the computation of the mass renormalization constant is made
in renormalization schemes suitable for lattice QCD computations, such as RI-MOM [2], SF [3],
RI-SMOM [4], but not MS, which is inherently perturbative.

1This does not apply to top quark, which will not be reviewed here
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In addition to the FLAG review released in 2013 [1], the Particle Data Group recently updated
a section dedicated to the quark masses [5]. In that latter review the results obtained by using
different approaches (sum rules, effective theories, lattices, etc.) have been combined and the
quoted averages are shown to be heavily dominated by the results obtained from the studies of
QCD on the lattice.

The remainder of the present review is organised as follows: In Sec. 2 we contextualise the
determination of quark mass in the more general framework of renormalisation of QCD, describe
a commonly used approach to determine quark masses and stress the importance of quark mass
ratios; we will devote special attention to the additional problems arising when defining a mass
indepentent renormalisation scheme in n f = 2 + 1 + 1 simulations, that are becoming more an
more available. In Sec. 3 we discuss results obtained by using less common inputs to compute the
quark masses on the lattice. In Sec. 4 we discuss an alternative method of computing the quark
masses through the moments of correlation functions. Sec. 5 is devoted to various determinations
of the b quark mass, while in Sec. 6 we discuss the recent works in which the d-u quark mass
difference has been computed. We conclude in Sec. 7.

2. Renormalisation

The computation of quark masses starts by defining a procedure to tune bare parameters in
such a way as to keep the physics unchanged while removing the cut-off. The lines of constant
physics, described by such a set of parameters, are constrained to describe the real world in the
continuum limit. A common procedure consists in reproducing the mass of the lightest pseudo-
Goldstone bosons, and to use an additional quantity (such as the mass of Ω, or a pion/kaon decay
constant) to determine the lattice spacing. Light pseudoscalar meson masses are highly sensitive
to the light quark masses, they are easy to compute on the lattice even with a limited numerical
effort, and their dependence on quark masses is well described by the Chiral Perturbation Theory
which can also be used to efficiently correct for the (exponentially small) finite volume effects of
the lattice.

After tuning the quark masses to reproduce the physical pseudoscalar meson masses, the lattice
regularised theory is renormalised, but to make sense of the bare parameters in the Lagrangian,
further steps are needed. A renormalised quark mass can be introduced by means of the chiral
vector Ward identity, which ensures that the product of the quark mass and the corresponding
scalar density (S = q̄q) is Renormalisation Group Invariant (RGI), and therefore Zm = 1/ZS. In
other words, in any renormalisation scheme that does not break the chiral symmetry,

mren
q (µ) = Zm(µ)mbare

q = mbare
q /ZS(µ) . (2.1)

Such relations2 allow for a meaningful notion of the renormalised quark mass at a fully non-
perturbative level, in schemes such as RI-MOM, RI-SMOM or SF. Relations to the reference MS
renormalisation scheme can be established in perturbation theory. It is then a question which scale

2If, instead, the adopted lattice regularisation breaks the chiral symmetry, in Eq. (2.1) an additive renormalisation
on the right hand side is needed as well, namely, mren

q (µ) = Zm(µ)[mbare
q −mcr], with mcr is a critical mass, i.e. the

amount of explicit chiral symmetry breaking by the lattice regulator.
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can be probed by the non-perturbative method, and then to assess whether or not that scale is high
enough to keep the uncertainties due to truncation in perturbative expansion small.

For example, the Rome-Southampton Method (RI-(S)MOM) to compute the renormalisation
constants non-perturbatively requires the existence of a window 1/L� ΛQCD� µ � π/a, with L
being the length of a side of the lattice box, in which the uncertainties related to the finite cut-off
and to the perturbative matching to other renormalisation schemes are controllable and small. In
practice this requirement translates to the condition that the lattice spacings should be smaller than
about 0.1 fm (a−1 ' 2 GeV). In the case of staggered quark action, however, additional complica-
tions prevented so far a simple implementation of the procedure.

The scaling window needed in the RI-(S)MOM is not needed in the method based on the use
of SF where a series of additional simulations need to be made with special boundary conditions
on a box of finite extension T , which ensure the renormalisation scale to be µ = 1/T .

When non-perturbative renormalisation methods cannot be easily applied, one can rely on the
QCD perturbation theory to compute Zm(µ). Unfortunately, however, perturbative calculations on
the lattice become rapidly too complex with an increase in the order of the perturbative expansion,
which in practice means that going beyond two loops becomes extremely difficult to do (cf. the
three loop stochastic computation presented by M.Brambilla at this conference [6]).

In Sec. 4 we will discuss a sophisticated approach that allows to make use of high-order con-
tinuum perturbation theory. Before discussing in detail the renormalisation of n f = 2+1+1 sim-
ulations, we comment extensively on the physical content of ratios of bare quark masses.

2.1 RGI ratios of quark masses

The knowledge of ambare(a) is already of invaluable importance. If the regularisation pre-
serves the chiral symmetry (or its U(1)A remnant), the quark masses renormalises multiplicatively,
so that in the mass independent renormalisation schemes (∂Zm/∂mq = 0) the ratio of renormalised
quark masses is equal to the ratio of bare quark masses:

mren
q1

mren
q2

=
ambare

q1

ambare
q2

. (2.2)

This relation holds as long as QED is not included in the simulation. The above conditions are
respected (for example) in the computations made by the Fermibalb/MILC collaboration [7] (cf.
also contribution by J. Komijani at this conference) based on their recent n f = 2+ 1+ 1 HISQ
regularised quark simulations. To determine the ratio between the strange quark mass ms and the
average of up and down quark masses, ml = (mu +md)/2, they proceeded in two steps. First, at

each value of the lattice spacing they tuned the bare light quark masses in such a way that (
a2)M2

π (am)

(a2) f 2
π (am)

computed on the lattice reproduces the experimentally measured (Mπ/ fπ)
2
exp. The resulting ambare

l

is then converted to physical units after using the lattice spacing a extracted from a fπ

(
ambare

light

)
=

f exp
π . The bare strange quark mass, instead, is fixed by tuning M2

ss = 2M2
K −M2

π to its physical
value (see left panel of Fig. 1). To LO in ChPT M2

ss, is independent on ml , so the tuning of ms

almost decouples from that of ml . With such a determined value of ms, the charm quark mass mc

is obtained from the requirement that the mass of the heavy-strange pseudoscalar meson coincides
with Mexp

Ds
.
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Figure 1: Left panel: tuning of the light and strange quark masses at a fixed lattice spacing (0.09 fm);
different points corresponds to mesons simulated numerically, with quarks of common mass ml (x-axis),
where vertical green lines show the value of ml at which the interpolation of M2

π/ f 2
π (top-left inset), 2M2

K −
M2

π (top-right) and the decay constant f (bottom) reproduce their physical value (red horizontal lines). Right
panel: continuum extrapolation of the ratio computed at various lattice spacings. Plots taken from Ref. [7].

The ratios ms/ml and mc/ms are computed at each lattice spacing, and are then extrapolated to
the continuum limit as shown in the right panel of Fig. 1 resulting in

ms/ml = 27.35(5)(+10
−7 ) , (2.3)

mc/ms = 11.747(19)(+59
−43) . (2.4)

These are the most accurate results for the quark mass ratios to date.

2.2 Renormalisation constants in n f = 2+1+1 simulations

The ETM collaboration was the first to produce results for quark masses from simulations
including N f = 2+ 1+ 1 dynamical quark flavours. Results presented in Ref. [8] were obtained
from the analysis along the lines of their previous work with N f = 2 [9]. They computed non-
perturbatively the mass renormalisation constants in the RI-MOM renormalisation scheme and
performed matching to the MS renormalisation scheme by using the expressions derived to four
loops in perturbation theory [10]. In order to define a mass-independent renormalisation scheme,
the renormalisation scale µ must be much larger than all the other scales of the theory, and, in
particular, we must have µ � m, with m the mass of the heaviest quark. In RI-MOM scheme this
is achieved by defining renormalisation constants at the chiral point.

In the case of their previous n f = 2 set of simulations, ETM collaboration computed renormal-
isation constants on the same set of gauge configurations used to measure hadronic observables.
Extrapolating to the chiral limit in that case comes as a virtue out of the necessity to simulate a
wide range of non-physical sea pion masses (280-500 MeV) needed for controlled extrapolation of
observables to the physical point at which the sea pion mass is mphys

π .
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quark mass after correcting for cut-o↵ e↵ects are shown in Fig. 14, where indeed all data fall on the same curve and

the physical masses of the ⌦� and ⇤+
c baryons are reproduced. The fit parameters m

(0)
⌦ , c

(1)
⌦ and ci are collected in

Table VII. The results in lattice units and the continuum extrapolated values in physical units for ⌦� and ⇤+
c are

listed in Table VI.
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FIG. 13. Tuning of the renormalized strange and charm quark masses with the experimental values of the ⌦ (left) and ⇤+
c

(right) masses respectively.

aµl am⌦ m⌦ (GeV) am
⇤+

c
m

⇤+
c

(GeV)

� = 1.90

0.0030 0.8380(77) 1.6575(609) 1.1651(157) 2.3223(729)

0.0040 0.8374(131) 1.6562(648) 1.1714(92) 2.3356(678)

0.0050 0.8491(118) 1.6808(637) 1.1816(78) 2.3571(670)

� = 1.95

0.0025 0.7484(60) 1.7111(535) 1.0236(52) 2.3523(584)

0.0035 0.7406(72) 1.6924(544) 1.0261(45) 2.3581(581)

0.0055 0.7477(67) 1.7093(540) 1.0434(43) 2.3997(580)

0.0075 0.7409(62) 1.6931(536) 1.0468(53) 2.4077(585)

� = 2.10

0.0015 0.5676(34) 1.6816(418) 0.7817(33) 2.3234(459)

0.0020 0.5568(54) 1.6484(437) 0.7796(68) 2.3171(494)

0.0030 0.5651(51) 1.6740(434) 0.7883(43) 2.3438(467)

TABLE VI. Masses of the ⌦ and ⇤+
c baryons in lattice and physical units with the associated statistical error. The values in

physical units are continuum extrapolated.

Given the fact that we have performed a high statistics run (see Table I) using mR
c = 1186 MeV, which was our

first estimate for mR
c and since this value is consistent with the final tuned value given in Eq. (25) we will use the

high statistics results to obtain the values of the charmed baryon masses at the physical point. We have checked
that interpolation of our lattice data for the charm baryons at the tuned value of mR

c = 1173(2.4) yield masses at
the physical point which are totally consistent with the ones obtained at mR

c = 1186(2.4), albeit with larger errors
due to the interpolation of the lattice results. Thus, we avoid interpolation and use the results obtained directly at
mR

c = 1186 MeV in what follows.

III. LATTICE RESULTS

Lattice results are obtained for three lattice spacings allowing to assess cut-o↵ e↵ects. We start by addressing any
possible isospin breaking e↵ects on the baryon masses.
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III. LATTICE RESULTS

Lattice results are obtained for three lattice spacings allowing to assess cut-o↵ e↵ects. We start by addressing any
possible isospin breaking e↵ects on the baryon masses.

Figure 2: Interpolation of Ω− (left panel) and Λ+
c (right panel) baryons respectively to physical renormalised

strange and charm quark mass. Plots taken from Ref. [13].

Conversely, results obtained from simulations carried out around the physical charm quark
mass in the new n f = 2+ 1+ 1 simulations cannot be safely extrapolated to the chiral limit of
the four quark masses. Therefore the renormalisation constants cannot be computed directly on
n f = 2 + 1 + 1 configurations on which bare quark masses are computed. 3 To overcome this
problem, the ETM collaboration specifically generated a set of gauge configurations with n f = 4
mass degenerate light quarks. The mass of the dynamical quarks is varied as to allow a continuum
extrapolation [11] of the renormalisation constants. With these ingredients at hand the average
up-down, strange and the charm quark masses were found to be:

mMS
l (2GeV) = 3.70(17)MeV , (2.5)

mMS
s (2GeV) = 99.6(4.3)MeV , (2.6)

mMS
c (mc) = 1.348(46)GeV . (2.7)

The authors also noted the advantage of working with ratios of similar quantities (eg. Mπ/Ms̄s,
MDs/Mc̄′s), because they are less sensitive to cut-off effects and therefore their continuum extrapo-
lation is much smoother.

Another possibility to define a mass independent scheme is to use the Schrödinger Functional
(SF) renormalisation procedure, where simulations can be carried out directly in the massless the-
ory, thus avoiding the need to extrapolate to the chiral limit. In the theory in which the heavy quarks
mh are included, one can use the Step Scaling approach to evolve the renormalisation constants
computed with physical (massive) heavy quarks up to a scale µ�mh, so that the terms ∝ (mh/µ)n

can be safely neglected. Such an approach is currently being investigated by the RBC/UKQCD
collaboration (cf. J. Frison contribution, Ref. [12]).

3. Other physical inputs

3.1 Fixing the quark masses through the baryon spectrum

Of all the possible observables used to compare theory and experiments to extract the values
of physical quark masses, the most commonly used are the pseudoscalar meson masses, mainly

3Renormalisation constants computed at the physical charm quark mass would define a mass-dependent renor-
malisation scheme. Though perfectly legitimate in principle, this additional mass dependency introduces additional
complications when matching to MS scheme, and therefore is far from be welcome.
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because they are the simplest physical quantities to compute on the lattice and the corresponding
results are very accurate. Nonetheless it is possible to use other quantities. For example, the
ETM collaboration has recently reported on their results for the strange and charm quark masses
by computing the baryon masses on the same set of n f = 2+ 1+ 1 gauge configurations already
discussed above, in Sec. 2.2 (see also the contribution by Ch.Kallidonis at this conference [13]).

More specifically, they fixed ms from Ω, the valence configuration of which is sss, and mc from
the singly charmed baryon Λc. By linearly interpolating the baryon masses expressed in terms of
mren

s and mren
c to their physical values, as illustrated in Fig. 2, they were able to extract the quark

masses, while the lattice spacing has been determined by using the pion and/or the proton mass.
The continuum and chiral extrapolations are made by relying on an empirical ansatz,

MΩ = Mchir
Ω + cΩM2

π +dΩa2 , (3.1)

MΛc = Mchir
Λc

+ c(2)
Ω

M2
π + c(3)

Ω
M3

π +dΩa2 . (3.2)

Lacking a solid effective theory framework to perform chiral extrapolation and to reliably estimate
the finite volume effects, this analysis is more challenging than those based on using the pseu-
doscalar mesons, mainly because of the difficulties in assessing the size of systematic errors. The
resulting strange and charm quark masses,

mMS
s (2GeV) = 92.4(0.6)(2.0)MeV (3.3)

mMS
c (2GeV) = 1.173(2)(17)GeV , (3.4)

appear to be in reasonable agreement with values obtained when using mesons as inputs, Eqs. (2.6, 2.7),
which is an encouraging consistency check. We reiterate that the systematic error estimates in
Eqs. (3.3, 3.4) are presumably less robust than those presented in Eqs. (2.6, 2.7).

3.2 Global fit approach

It is a common practice to determine the quark masses in dedicated lattice QCD analysis, by
choosing a minimal number of inputs to renormalise the theory, and then to use the obtained quark
mass values in calculations of other physical quantities.

Recently the RBC/UKQCD collaboration has presented a large set of results obtained from
simulations performed around the physical pion mass [14]. In order to correct for the (small)
difference between the simulated quark mass and the physical one they made a very short O(3%)

chiral extrapolation in which they combined the results of simulations made near the physical pion
mass with those corresponding to heavier pions. In addition to the three experimental inputs used
to tune the physical light quark masses (mπ , mK and MΩ), they computed several other quantities
( fπ , fK , BK , . . . ) and then performed a simultaneous fit of all the data by using the expressions
derived in chiral perturbation theory in which they were able to further monitor the dependence
of each physical quantity on the sea quark mass. Such a dependence further constrains the quark
masses, the values of which turn out to be extremely accurate, namely,

mMS
l (3GeV) = 2.997(49)MeV (3.5)

mMS
s (3GeV) = 81.64(1.17)MeV . (3.6)

7
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We notice that a global fit approach allows to determine all the observables while keeping
all correlations under control. The approach could be in principle extended to include even more
observables, but it becomes more complicated to verify consistency of different fit ansätze.

4. Renormalised quark mass from the moments of correlation functions

A few years ago the HPQCD group has proposed to bypass the intermediate step non-perturbative
renormalisation and obtain directly the renormalised quark mass in the MS scheme, by computing
an RGI quantity on the lattice and matching it to its counterpart computed in the continuum pertur-
bation theory, expressed in terms of the MS quark masses and the running coupling [15].

Moments of the correlation function are nowadays used in lattice QCD for a range of different
quantities. In Ref. [15] they have been used for the first time to compute the charm quark mass.

After summing up the correlation function over the space, one first defines the moments with
respect to time,

G( j)
n = ∑

t
(t/a)nG( j) (t) , G( j) (t) =

(
ambare

c

)2
∑
~x

〈
j (~x, t) j(~0,0)

〉
, (4.1)

where G( j)
n is the n-th moment of the non-perturbatively computed two-point correlation function,

j = c̄Γc (Γ = γ5,γµ ), with all quantities being unrenormalised. One then forms the convenient
double ratios of moments G( j)

n and their values G( j0)
n computed to LO in lattice perturbation theory,

R( j)
n =

Mmes j

2m0
c

√√√√ G( j)
n

G( j)
n−2

G( j0)
n−2

G( j0)
n

, (4.2)

the quantities known as reduced moments. In the above expression Mmes is the meson mass, and
m0

c is the bare mass of the charm pole mass computed in lattice perturbation theory. Such a mixture
of perturbative and non-perturbative quantities benefits from the following advantages:

• renormalisation constant of the operator j cancel in the ratio, and Rn is an RGI quantity;

• cut-off effects, finite volume effects and the statistical noise largely cancel in the ratio;

• the introduction of a leading order calculation of the moments additionally suppresses cut-off
effects, so that the ratios Rn can be smoothly extrapolated to the continuum limit.

As a last comment, we notice that the expressions for Rn become simpler if the currents used in the
correlation function satisfy a Ward Identity, because it is possible to form the RGI quantities more
easily.

Most importantly, as an effect of the known exponential decay in space-time, moments of
correlation function are largly dominated by the short distance physics contribution, which means
that for values of n not too large (n . 10), Rn is expected to be reliably reproduced by perturbation
theory. One can deduce the values of the quark mass mMS

c (µ) and of the running coupling αMS
s (µ)

by comparing this result with the continuum perturbation theory prediction,

RPQCD
n =

rPQCD
n (αMS,µ/mc)

2mMS
c (µ)/Mmes j

, (4.3)

8
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0.0 0.1 0.2 0.3 0.4

a2  (GeV−2 )

1.1
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1.4

1.5

1.6

R
n

R8

R10

R4

R6

5

TABLE II: Simulation results for Rn(a, mu/d, ms) for different lattice parameter sets (see Table I). The inverse lattice spac-

ing a−1 is in GeV. Extrapolations to zero lattice spacing and zero sea-quark masses are given for each quantity, together with
the corresponding value for mc(µ) (in GeV) or αMS(µ) for nf = 4 flavors and µ = 3GeV.

Set: 1 2 3 4 5 6 7 8
a−1: 1.31 1.31 1.62 1.60 1.63 2.26 2.28 3.24 a, mu/d/s → 0 mc(µ)
R6 1.448(3) 1.447(3) 1.494(3) 1.492(3) 1.491(3) 1.514(3) 1.511(3) 1.519(3) 1.528(11) 0.986(10)
R8 1.372(3) 1.371(3) 1.387(3) 1.386(3) 1.384(3) 1.374(3) 1.373(3) 1.370(3) 1.370(10) 0.986(11)
R10 1.329(3) 1.328(3) 1.326(3) 1.326(3) 1.324(3) 1.306(3) 1.305(3) 1.304(3) 1.304(9) 0.973(19)
R12 1.294(3) 1.293(3) 1.284(3) 1.284(3) 1.281(3) 1.263(3) 1.262(3) 1.262(3) 1.265(9) 0.969(23)
R14 1.264(3) 1.264(3) 1.252(2) 1.251(2) 1.248(2) 1.232(2) 1.231(2) 1.232(2) 1.237(9) 0.967(28)
R16 1.239(2) 1.239(2) 1.228(2) 1.226(2) 1.223(2) 1.207(2) 1.206(2) 1.210(2) 1.215(9) 0.965(33)
R18 1.218(2) 1.218(2) 1.208(2) 1.205(2) 1.202(2) 1.187(2) 1.187(2) 1.191(2) 1.198(9) 0.963(38)

Set: 1 2 3 4 5 6 7 8
a−1: 1.31 1.31 1.62 1.60 1.63 2.26 2.28 3.24 a, mu/d/s → 0 αMS(µ)
R4 1.162(1) 1.161(1) 1.189(1) 1.187(1) 1.187(1) 1.223(1) 1.221(1) 1.249(1) 1.281(5) 0.252(6)

R6/R8 1.055(1) 1.055(1) 1.078(1) 1.076(1) 1.077(1) 1.101(1) 1.101(1) 1.109(1) 1.113(2) 0.249(6)
R8/R10 1.033(1) 1.033(1) 1.046(1) 1.045(1) 1.046(1) 1.052(1) 1.052(1) 1.051(1) 1.049(2) 0.224(31)
R10/R12 1.027(1) 1.027(1) 1.033(1) 1.033(1) 1.034(1) 1.034(1) 1.034(1) 1.033(1) 1.031(2) 0.241(30)
R12/R14 1.023(1) 1.023(1) 1.025(1) 1.026(1) 1.026(1) 1.025(1) 1.025(1) 1.024(1) 1.022(2) 0.243(47)
R14/R16 1.020(1) 1.020(1) 1.020(1) 1.021(1) 1.021(1) 1.020(1) 1.020(1) 1.019(1) 1.017(2) 0.242(70)
R16/R18 1.017(1) 1.017(1) 1.016(1) 1.017(1) 1.017(1) 1.017(1) 1.017(1) 1.016(1) 1.014(2) 0.241(96)

Moment R4 and the ratios of moments are more accu-
rately determined in our simulation than the other Rns,
and so typically require an additional term in the (amc)

2

expansion. Again, however, the eight terms we use are
many more than the minimum needed.

Our final error estimates depend upon the widths of
our priors [29]. We tested these widths in a couple of
ways, beyond including simulation data from the coars-
est lattices. First we compared our widths with the val-
ues suggested by the empirical Bayes procedure described
in [28]. This procedure uses the variation in the data it-
self to determine, for example, an optimal value for σc.
The widths we use are two to four times larger that what
is indicated by the empirical Bayes criterion, suggesting
that our error estimates are conservative. The dominant
fit coefficients in the (amc)

2 expansion for R6, for ex-
ample, range between −0.05 and −0.20, which is much
smaller than the σc = 1 we use.

As a second test, we verified that our extrapolation
procedure gives consistent results when data from either
the smallest or the largest lattice spacing is discarded.
That is, we demonstrated that results obtained from the
truncated data sets agree within errors with results from
the full set of simulation data. This shows that our error
estimates are robust even when working with limited sim-
ulation data sets. As mentioned above, our final results
are not much affected by data from the coarsest lattice
spacing. Simulation data from the finest lattice spacing,
on the other hand, has a very significant impact.

FIG. 2: mc(µ), for µ = 3GeV and nf = 4 flavors, from dif-
ferent moments of correlators built from four different lattice
operators. The gray band is our final result for the mass,
0.986 (10) GeV, which comes from the first two moments of
the pseudoscalar correlator (upper-left panel).

IV. EXTRACTING mc(µ) AND αMS(µ)

To convert the extrapolated reduced moments into
c masses and coupling constants, we require perturba-
tive expansions for the rn in Eq. (12). These are easily
computed from the expansions for gn [3, 4, 5, 6, 7, 8, 9]
using Eq. (11); details can be found in the Appendix.
The perturbative expansions have the form

rn = 1+rn,1αMS(µ)+rn,2α
2
MS

(µ)+rn,3α
3
MS

(µ)+. . . (15)

Figure 3: Left panel: continuum extrapolation of ratios of different order (plot taken from Ref. [17]). Right
panel: mc(µ), for µ = 3 GeV and n f = 4 flavors, from moments of correlators built from four different lattice
operators (grey band marking the final results).

where rPQCD
n has been derived at three loop [16].

In the left panel of Fig. 3 we show the extrapolation to the continuum limit of the reduced
moments R4,6,8,10 computed numerically by the HPQCD collaboration, after tuning the bare quark
mass ambare

c in such a way as to reproduce Mηc . In the right panel is shown the result of mc(µ) ob-
tained from comparison of the lattice results with the expression (4.3), for several types of currents
and for a wide range of moments.

The approach proposed by HPQCD collaboration is inspired by the quark-hadron duality sum
rules in which the moments of correlation function are estimated non-perturbatively by connect-
ing the experimental data for differential electron-positron annihilation cross section, dσ(e+e−→
γ∗ → X)/ds, with perturbative QCD computations, in order to extract the heavy quark mass and
the running coupling. In the method proposed here, instead of using the experimental data one
computes the moments directly on the lattice and by using various Dirac structures.

HPQCD collaboration performed various tests to check the stability of mc (µ) with respect
to the variation of n, and the compatibility of the results obtained from different correlation func-
tions. The analytic parametrisation of Eq.( 4.3) of Rn has also been extended by including the
leading power correction, proportional to the gluon condensate, in order to try and quantify the
non-pertubative effects. Those effects are, however, found to be negligible. 4

In their recent paper [17] the HPQCD collaboration reported on their calculation of the charm
quark mass obtained on the set of n f = 2+1+1 gauge field configurations produced by the MILC
collaboration in which the improved (HISQ) regularisation of the sea quarks has been implemented.
In other words, in their calculation the effects of the charm quark on the polarization of the QCD
vacuum have been taken into account, while the light quark mass is varied down to the physical
pion mass. By introducing a simplified version of the ratios, and after setting the scale by using w0

instead of r1, they obtained, mc(3GeV,n f = 4) = 0.9851(63)GeV, in good agreement with their
previous result (cf. Ref. [18]) mc(3GeV,n f = 3) = 0.986(6)GeV . Combining the renormalised
value of the charm quark mass with the updated determination of the charm/strange quark mass

4Given the intrinsic ambiguity of the non-perturbative interpretation of the gluon condensate, this inclusion cannot
be used to improve the reliability of the determination of the quark mass, but just as a mean to estimate the applicability
of perturbation theory to such a computation.
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ratio, mc/ms = 11.652(65), they also provided an accurate estimate of the strange quark mass,
ms(2GeV,n f = 3) = 93.6(8)MeV and of the b quark mass, mMS

b (mb, n f = 5) = 4.162(48)GeV.
This whole approach can be interpreted as a way to compute the quark mass renormalisation con-
stant, ZMS

m (1/a) = mMS
c (1/a)/ambare

c /a, by using Mmes j as a physical input.
Results presented by the HPQCD collaboration are very accurate, and a natural question arises:

are the moments of correlation functions a viable tool to increase the accuracy of lattice QCD
determinations? So far, only the ETM collaboration implemented the method of moments in the
computation by using the gauge field configurations with n f = 2 dynamical light quarks [19]. Their
preliminary results, mc(3GeV,n f = 3) = {0.979(9), 0.998(14)}GeV, based on two different chiral
extrapolation procedures, are in good agreement with the values reported by the HPQCD collabo-
ration, as well as with the previous result of ETMC obtained by using the standard method on the
same set of gauge field configurations and by implementing the non-perturbative RI-MOM renor-
malisation program [9]. Given the lack of a comprehensive study of systematic errors, it remains
difficult to estimate the improvement induced by the use of ratios of moments of correlation func-
tions instead of the ordinary non-perturbative renormalisation, nor is it possible to accurately verify
the compatibility of the results and assess the ultimate question concerning the overall control of
non-perturbative effects of the method. One can only be comforted by the circumstantial evidence
of the smallness of the gluon condensate contribution detected in [17], suggesting that the ambigu-
ity in separation of the perturbative and non-perturbative effects affects the results well below the
current precision.

In conclusion, moments of correlation functions have not yet been shown to be clearly superior
to ordinary methods to define renormalised quark mass, but are certainly a key factor to allow a pre-
cise determination in those lattice frameworks where setting up a non-perturbative renormalisation
program is notoriously difficult (for example in the staggered regularisation).

5. b quark mass

Typical lattice spacings used in current lattice QCD simulations are larger than (or of the same
order as) the scale involved in the physics of b quark. For example MB+ = 5.279GeV while a
typical range of (inverse) lattice spacings of the lattice simulations is [2÷ 4] GeV. For this reason
specific methods dedicated to treatment of the b-quark on the lattice have been designed. In the
following we describe modern approaches used to determine the b quark mass.

5.1 Binding energy of non-relativistic heavy meson

Non-Relativistic QCD (NRQCD) [20] is an effective expansion of the QCD Lagrangian in
terms of quark velocity v. The framework is used to describe a series of physical quantities, ranging
from hadron spectroscopy to the hadronisation effects in decay amplitudes. In Ref. [21] it was
proposed for the first time to compute the quark mass in NRQCD through an analysis of the binding
energy in the bottomium system, namely,

Mexp
ϒ

= 2mpole
b +∆Mϒ , (5.1)

where mpole
b is the pole mass of b quark and ∆Mϒ is the binding energy. Although the separation

between the two contributions is plagued by the renormalon ambiguity, that ambiguity cancels out
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when converting the pole mass to the quark mass renormalised in the MS scheme. Therefore an
accurate computation of the binding energy could be in principle used to obtain mMS

b (µ).
One first fixes the bare quark mass in the NRQCD Lagrangian, by matching the spin averaged

bottomium mass computed on the lattice with the corresponding experimental value 5

Mbb̄ = a−1 (3aMϒ +aMηb)/4 . (5.2)

In NRQCD the zero of the energy is shifted so that the dispersion relation for a meson reads:

E(~p) = E(0)+
√

M+~p2−M , (5.3)

where the rest energy E(0) differs from the meson mass M by an unknown constant and thus cannot
be used to directly fix the bare quark mass. Instead, the simulated value of M can be extracted by
studying the dispersion relation of mesons, as shown in Eq. (5.3). The binding energy can be
computed through the relation,

∆Mϒ = Eϒ(0)−2E0 , (5.4)

where E0 is the energy of an isolated b quark, determined perturbatively.
With these ingredients in hands, the pole quark mass can be computed as

mpole
b = Mexp

ϒ
− [Eϒ(0)−2E0] , (5.5)

which is then matched to the MS scheme by using the continuum perturbation theory at the same
order used to define the binding energy.

NRQCD is a non-renormalisable effective theory. The subtraction defined in Eq. (5.4) involves
quantities that diverge as a−1 in the continuum limit. Power divergence cannot be completely and
unambiguously eliminated by means of perturbation theory, so that even after subtracting E0 the
binding energy contains a not-fully cancelled divergent term. This implies that no continuum limit
of the right-hand side of Eq. (5.5) can be defined, and indeed previous steps did not include it. In
lattice NRQCD one is confined to work in a range of lattice spacings small enough to keep the
cut-off effects are under control, but large enough to avoid the sizable O(a−1) effects. Instead
of a real continuum limit, only a comparison of results obtained at different lattice spacings can
be made, and the difference amongst different ensembles is included in the budget of systematic
uncertainties.

In their recent work the HPQCD collaboration presented results based on two different lattice
spacings of the n f = 2+1 ASQtad gauge configurations produced by the MILC collaboration and
the NRQCD action [22]. The subtraction in Eq. (5.4) is carried out to two loops using a mixture of
automatised perturbation theory (cfr. C.Monahan at lattice conference 2013 [23]) and simulations
performed at high β . Their final result,

mMS
b (mb, n f = 5) = 4.166(43)GeV , (5.6)

is a very significant improvement of their first calculation presented in Ref. [21], in which the
subtraction of the divergence had been carried out only to one loop.

5This choice is adopted to minimise the spin dependent systematic error induced by neglecting the higher order
terms in the NRQCD Lagrangian
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Nonetheless it must be stressed that the ambiguity in cancellation of the power divergence
is an intrinsic feature of NRQCD that limits the precision of the approach. When the method was
proposed in Ref. [21], it allowed to carry out the first unquenched computation of the b quark mass.
Today, more reliable approaches exist and the NRQCD results can be viewed as a consistency check
of other lattice methods.

5.2 Matching HQET and QCD

Heavy Quark Effective Theory (HQET) is another effective theory of QCD based on heavy
quark symmetry which provides an expansion in the inverse heavy quark mass 1/mh. Contrary
to NRQCD, HQET can be matched to QCD order by order in 1/mh without running into troubles
related to the subtraction of the power divergent term. After a long effort, the Alpha collaboration
performed a fully non perturbative matching of HQET to QCD at O (1/mh) [24],

L HQET = ψ̄h

[(
D0 +mbare

)
−ωkinD2−ωspinσ ·B

]
ψh , (5.7)

where the parametres ωkin and ωspin were computed by applying the step-scaling method on the
gauge field configurations that include n f = 2 Wilson improved dynamical light quarks, and by
using SF technique. To that order in heavy quark expansion one can write,

MB = mbare
b +Estat +ωkinEkin +ωspinEspin , (5.8)

where Estat is determined from the correlation function of the static heavy-light pseudoscalar/vector
meson, while Ekin, Espin are determined from time behaviour of the correlation functions which
include operator insertions of D2 and σ ·B, respectively.

To determine mbare
b , one interpolates MB

(
mbare

b

)
to reproduce Mexp

B , while simultaneously ex-
trapolating to the physical pion mass and to the continuum limit. They determined mRGI

b by studying
the running of the quark mass in the SF renormalization scheme and finally converted it to mMS

b (mb)

using the continuum perturbation theory. Their result for the b quark mass,

mMS
b (mb, n f = 5) = 4.21(11)GeV , (5.9)

was presented in Ref. [25], which improved their previous result based on quenched simula-
tions [26]. More importantly, 1/mh corrections included in the new study turned out to be very
small, showing a reassuring convergence of HQET at the scale of the b quark mass, and thus war-
ranting the robustness of the approach.

5.3 Ratio method

Finally, we discuss the method adopted by ETMC, in which the observables used to fix the b
quark mass are computed at the scale of the b quark by interpolating between the results obtained
around the heavy charm quark mass and the static quark mass limit. To be able to do so they adopted
the so-called ratio method [27], inspired by the Step-Scaling approach proposed in Ref. [28]. This
method benefits from the heavy quark symmetry relation,

lim
mh→∞

Mhl

mh
= 1 , (5.10)
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Figure 4: Chiral and continuum limit extrapolation (left panel) and interpolation to b quark mass z ∝ mRGI
b

(right panel) of MB in HQET. Plots taken from Ref. [25].

by considering a geometric series of masses m(0) = mc, m(1) = λmc, . . . , m(n) = λ nmc , from which
one computes ratios of Mhl between two consecutive values of the heavy quark mass,

y
(

m(n)
h , λ ; ml, a

)
= λ

Mhl

(
m(n)

h ; ml, a
)

Mhl

(
m(n)

h /λ ; ml, a
) . (5.11)

Important advantages in computing these ratios on the lattice are a large cancellation of cut-off
effects, and a strong reduction of statistical noise. Each ratio is extrapolated to the continuum limit
and to the physical Pion mass. The value of Mhl(λ

nmc) can be reconstructed by fitting the first
y1 . . .yk ratios as a function of mh = λ kmc up to values k < n where the cut-off effects are under
control, and one can then easily compute Mhl(λ

nmc) = Mcly(λmc)y(λ 2mc) . . .y(λ nmc) using the y
values from the fit ansatz. In this fit a heavy quark symmetry relation, Eq. (5.10), constrains the fit
function and transforms the extrapolation to interpolation.

With a given parameter λ , and in order to reproduce the physical value MB, one needs j ratios,
so that the quark mass mb can be finally determined by reconstructing the corresponding value
mb = λ jmc. In Ref. [29] the ETM collaboration provided a preliminary result for b quark mass,

mMS
b (mb) = 4.26(16)GeV, (5.12)

from simulations with n f = 2+1+1 twisted mass quarks, thus improving their previous result [30].

It must be stressed that the method relies substantially on the cancellation of cut-off effects
when computing ratio of an observable at two close masses. This cancellation can and must be
checked on a case by case approach. In particular it has been shown to happen in Twisted Mass,
for a set of observables. In other regularisations or for other observables the cut-off effects might
change in a less controlled way with the heavy quark mass, in which case the reduction of cut-off
effects would be only mild and the ratio method itself of limited utility.
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6. d-u quark mass difference

Isospin is a good symmetry of the strong interaction. Smallness of the isospin breaking effects
warrants reliability of the calculations performed in the isospin symmetric limit of lattice QCD, in
which it is assumed that mu = md = ml , and charge are electrically neutral (e = 0). On the other
hand that same smallness makes difficult to determine the mass difference δmud = (md −mu)/2
itself. Far from being a matter of purely conceptual relevance, determining separately the mass of
the light quarks answers deep theoretical questions: for instance if the u quark was massless, the
CP-violating term θQCDFF̃ would not impact any physical observable, which would then explain
why the measured value of θQCD is apparently so small (strong CP puzzle).

An updated review of the inclusion of QED into lattice QCD simulations has been presented at
this conference by A. Portelli. In the following we will cover only the aspects strictly related to the
quark masses. Including QED in the QCD Lagrangian complicates the pattern of renormalisation
of quark masses. Quarks of different charges receive QED corrections that evolve in different ways
under the renormalisation group. For this reason, ratios of quark masses of different charges are
no longer RGI quantities (though the effect induced by different running is largely negligible at
the level of current precision). Similarly the separation of the contribution of QCD and QED to
physical observables is a matter of convention, because their sources (quark mass difference, QED
corrections) get mixed up under renormalisation. The exact separation of QCD and QED effects
requires an additional renormalisation condition, though a broad range of sensible schemes can be
considered to be equivalent at the level of current precision.

Thanks to isospin and charge symmetries, the mass of neutral pion receives corrections due to
the breaking of isospin only at (highly suppressed) O

(
e2δmud

)
. This makes its experimental value

M0
π = 135MeV appropriate to determine the average mass of the light quarks ml . The difference

between the neutral and charged Pion masses at leading order in the isospin breaking is an O(e2)

effect, whereas the contribution due to δmud starts from O(δm2
ud), and thus cannot be efficiently

used to determine mu and md separately. The easiest solution is to consider to the difference of
masses of K mesons. Such a strategy has been followed by three different groups.

The RM123 collaboration included in a non-perturbative QCD framework the leading order
isospin breaking terms on the n f = 2 gauge configurations generated by ETMC, and obtained [31]

mMS
u,d(2GeV) = {2.40(15)(17), 4.80(15)(17)}MeV , (6.1)

mu/md = 0.50(2)(3) . (6.2)

The BMW collaboration combined the determination of the ChPT Low Energy Constant
B2 [32] with the Kaon meson mass difference of [33], to obtain the preliminary results

mMS
u,d(2GeV) = {2.29(6)(5), 4.65(6)(5)}MeV , (6.3)

mu/md = 0.49(1)(1) . (6.4)

Finally, the MILC collaboration presented their preliminary results for mu/md based on the
update of the Kaon mass splitting determined in Ref. [35]. After combining that value with the
quark mass dependence found in the analysis of decay constants (cf. contribution by J. Komijani),
they obtain [34]

mu/md = 0.4482(48)stat(
+ 21
−115)a2(1)FVQCD(165)EM , (6.5)
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where the dominant source of error comes from electromagnetism.
The precision reached by the three methods, based on largely different approaches, and the

general agreement of the results, can be viewed as progress of lattice QCD. Moreover, all three
results completely rule out the possibility that the u quark is massless.

7. Conclusions

The determination of the quark masses is of great theoretical and phenomenological impor-
tance:

• once determined, they become input parameters for other calculations in QCD;

• they help restraining the (representations of) gauge groups of theories aiming at the Grand
Unification of fundamental interactions;

• more generally, they provide input and constraints to any theory of flavour;

• compatibility of the determinations obtained by different lattice groups, is also a very signif-
icant check of universality of the continuum limit of lattice QCD.

Lattice QCD offers a well defined framework in which to determine quark masses non-perturbatively.
Several approaches can be used to define renormalised quark masses and to match them to com-
monly used schemes such as MS. Ratios of the masses of different quarks, being RGI quantities,
can be and are computed very accurately on the lattice, and can be very useful when comparing the
lattice and non-lattice approaches in treating non-perturbative QCD.

Thanks to the recent theoretical and numerical developments, we are nowadays able to com-
pute quite accurately the b quark mass and the difference between u and d quark masses. In that
way we are completing the picture of determination of quark masses by means of lattice QCD.

The results concerning the light quark masses discussed here are in good agreement with those
extensively discussed in the last FLAG report [1]. Awaiting an update of the FLAG review that will
also include a detailed discussion of heavy quarks, it is useful to quote the average value of mc

obtained from the two n f = 2+1+1 simulations discussed in Sec. 2.2 and Sec. 4,

mMS
c (mc, n f = 4) = 1.27(1)GeV . (7.1)

However it would be desirable to have at least one more lattice QCD estimate of mc with n f =

2+1+1 in order to clarify a discrepancy between the results obtained by two collaborations.
As for the average b quark mass of the n f = 2+1+1 determinations discussed in Sec. 4 and

Sec. 5.3 we obtain,
mMS

b (mb, n f = 5) = 4.17(5)GeV . (7.2)
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