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1. Preliminary

In this manuscript, we consider the energy-momentum tensor

Tµν .

As is well known, the energy-momentum tensor (EMT) is one of the most fundamental quantities in
physics. It is fundamental because this operator is related to the symmetry of space-time; the EMT
can be defined as the Noether current of translational symmetry, and it also constitutes generators
of Poincaré transformation. Moreover, elements of the EMT, energy and momentum densities
and stress tensor, are basic quantities in physics. The EMT also appears in various fundamental
equations such as Einstein equation and hydrodynamic equations.

However, if one wants to define and analyze the EMT in lattice QCD Monte Carlo simulations,
there are highly nontrivial problems. First, the definition of the EMT itself is nontrivial on the
lattice, because the lattice regularization explicitly breaks translational symmetry. For example, a
naïve definition,

Tµν =
1
g2

0
Fa

µρFa
νρ −

1
4g2

0
δµνFa

ρσ Fa
ρσ , (1.1)

with a choice of discretized definitions for the field strength Fµν on the lattice, does not give the
correct EMT even for off-diagonal components in the sense that it does not correspond to the EMT
in the continuum limit [1]. Although the EMT on the lattice can be constructed by an adequate
linear combination of operators, the renormalization factor of each operators has to be determined
non-perturbatively, which requires additional numerical simulations for each lattice parameter [1,
2]. Second, even if one employs a definition of the EMT on the lattice, its measurement is noisy. For
example, the calculation of the correlation function of the EMT requires extremely large statistics
[3, 2]. The analysis becomes more noisy as the lattice spacing becomes finer. Because of these
reasons, there are not many studies which have analyzed the EMT directly on the lattice.

On the other hand, if one were able to deal with the EMT on the lattice in a controllable
manner, various interesting analyses would become possible, because the EMT is one of the most
fundamental quantities in physics. For example, if we have the correctly normalized EMT operator
on the lattice one can calculate thermodynamic quantities, energy density ε and pressure P, at
nonzero temperature by directly taking the thermal expectation values of the diagonal components
of the EMT as

ε =−〈T00〉, P = 〈Tii〉. (1.2)

The measurement of bulk thermodynamics on the lattice itself can be done without the EMT; the
method based on the thermodynamic relations called the integral method [4] is well established.
The measurement with simple relations Eq. (1.2), however, will provide us with more intuitive way
to investigate these quantities. Next, the fluctuations and correlation functions of the EMT are also
interesting observables. The fluctuation of the total energy of the system T̄00, for example, is related
to the specific heat per unit volume as [5]

cV

T 3 =
〈δ T̄ 2

00〉
V T 5 . (1.3)
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This equation suggests a novel way to analyze cV through the measurement of the energy fluc-
tuation, which becomes possible with the correctly normalized EMT operator. More interesting
quantities related to the EMT correlators are transport coefficients. Shear viscosity, for example, is
related to the correlation function of T12 via the Kubo formula as [6]

η =
1

TV

∫
∞

0
dt〈T̄12(t); T̄12(0)〉, (1.4)

where 〈O1;O2〉 is the Kubo’s canonical correlation and Ō =
∫

V d3xO(x). The transport coefficients
are important quantities to understand dynamical time evolution of relativistic heavy ion collisions
[7]. The measurement of transport coefficients with Kubo formula, however, requires real-time
correlation function of the EMT, while the lattice simulations can obtain only imaginary time cor-
relators directly [3, 2]. The analytic continuation from imaginary-time functions to real time is
needed, which, however, is a nontrivial procedure requiring an accurate measurement of the EMT
correlator.

The application of the EMT operator is not limited to the physics of nonzero temperature. For
example, with the correctly normalized EMT operator one would be able to measure the energy
and momentum distributions in hadrons and flux tube [8] directly on the lattice. The correlation
functions of the EMT in vacuum are also a useful probe to understand vacuum structure of the
gauge theory.

Recently, a construction of the EMT in gauge theory is proposed in Ref. [9] on the basis of the
Yang-Mills gradient flow [10] and the so-called small flow time expansion [11]. In this method,
the constructed EMT is renormalized and does not have divergences, and this property is kept
even for the lattice regularization. Moreover, the statistical error is expected to be reduced thanks
to the cooling nature of the gradient flow. Therefore, this method can become a solution for the
longstanding problem on the measurement of the EMT on the lattice. In this manuscript, we report
the first numerical analysis of the EMT in this method in lattice simulations [12].

2. Gradient flow

Because we use the Yang-Mills gradient flow to define the EMT, let us first give a brief review
on this concept. The gradient flow for the Yang-Mills gauge field is the continuous transformation
of the field defined by the differential equation [10]

dAµ

dt
=−g2

0
∂SYM(t)

∂Aµ

= DνGνµ , (2.1)

with the Yang-Mills action SYM(t) composed of Aµ(t). Color indices are suppressed for simplicity.
The initial condition at t = 0 is taken for the field in the conventional gauge theory; Aµ(0) = Aµ .
The flow time t, which has a dimension of inverse mass squared, is a parameter which controls the
transformation. The gauge field is transformed along the steepest descent direction as t increases.
At the tree level, Eq. (2.1) is rewritten as

dAµ

dt
= ∂ν∂νAµ +(gauge dependent terms). (2.2)
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Neglecting the gauge dependent terms, Eq. (2.2) is the diffusion equation in four-dimensional
space. For positive t, therefore, the gradient flow acts as the cooling of the gauge field with the
smearing radius

√
8t. In Ref. [11], it is rigorously proved that all composite operators composed of

Aµ(t) take finite values for t > 0. This property ensures that observables at t > 0 are automatically
renormalized.

Recently, the gradient flow has been applied for various purposes, such as the scale setting,
analysis of the running coupling, measurement of topology, as well as the studies on their properties
on the lattice; see reviews in Refs. [13, 14] and references [11, 9, 15, 16, 17, 18]. In the present
study, we use the gradient flow to define the EMT operator using the small flow time expansion
[11, 9, 15].

3. Small flow time expansion and the EMT

In the present study, we consider the EMT defined by the small flow time expansion [9]. In
order to illustrate the concept of small flow time expansion, let us consider a composite operator
Õ(t,x) composed of the field Aµ(t) at positive flow time. The small flow time expansion asserts
that in the small t limit this operator can be written by a superposition of operators of the original
gauge theory at t = 0 as

Õ(t,x)−−→
t→0

∑
i

ci(t)OR
i (x), (3.1)

where OR
i (x) on the right-hand side represents renormalized operators in some regularization scheme

in the original gauge theory at t = 0 with the subscript i denoting different operators, and x repre-
sents the coordinate in four dimensional space-time.

The relation Eq. (3.1) is reminiscent of the operator product expansion (OPE). While a product
of operators at different space-time points are expanded by local operators in the OPE, Eq. (3.1)
relates an operator at t > 0 with those of t = 0. The validity of this expansion is expected from the
cooling nature of the gradient flow; since the operator Õ(t,x) depends on the fundamental gauge
theory only inside the smearing radius

√
8t around x, Õ(t,x) should be described by the local

property of the fundamental theory at x in t → 0 limit. Similarly to the Wilson coefficients in the
OPE, the coefficients ci(t) in Eq. (3.1) can be calculated perturbatively [11, 9].

Using Eq. (3.1), one can define the renormalized EMT [9]. For this purpose, we first consider
dimension-four gauge-invariant operators for operators of the left-hand side in Eq. (3.1). In pure
gauge theory, there are two such operators;

Uµν(t,x) = Ga
µρ(t,x)G

a
νρ(t,x)−

1
4

δµνGa
ρσ (t,x)G

a
ρσ (t,x), (3.2)

E(t,x) =
1
4

Ga
µν(t,x)G

a
µν(t,x). (3.3)

Although Eqs. (3.2) and (3.3) are quite similar to the traceless-part and trace of the EMT, they are
not the EMT since Gµν(t,x) is defined at nonzero flow time t > 0. Because these operators are
gauge invariant, when they are expanded as in Eq. (3.1) only gauge invariant operators can appear
in the right-hand side. Such operator with the lowest dimension is an identity operator. In the
expansion of the traceless operator Eq. (3.2), however, the constant term cannot appear. The next
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gauge-invariant operators are the dimension-four EMTs. Up to this order, therefore, the small flow
time expansions of Eqs. (3.2) and (3.3) are given by

Uµν(t,x) = αU(t)
[

T R
µν(x)−

1
4

δµνT R
ρρ(x)

]
+O(t), (3.4)

E(t,x) = 〈E(t,x)〉0 +αE(t)T R
ρρ(x)+O(t), (3.5)

where 〈·〉0 is vacuum expectation value and T R
µν(x) is the correctly normalized conserved EMT

with its vacuum expectation value subtracted. Abbreviated are the contributions from the operators
of dimension 6 or higher, which are proportional to powers of t because of dimensional reasons,
and thus suppressed for small t.

Combining relations Eqs. (3.4) and (3.5), we have

T R
µν(x) = lim

t→0

{
1

αU(t)
Uµν(t,x)+

δµν

4αE(t)
[E(t,x)−〈E(t,x)〉0]

}
. (3.6)

The coefficients αU(t) and αE(t) are calculated perturbatively in Ref. [9] as

αU(t) = ḡ(1/
√

8t)2
[
1+2b0s̄1ḡ(1/

√
8t)2 +O(ḡ4)

]
, (3.7)

αE(t) =
1

2b0

[
1+2b0s̄2ḡ(1/

√
8t)2 +O(ḡ4)

]
. (3.8)

Here ḡ(q) denotes the running gauge coupling in the MS scheme with the choice, q = 1/
√

8t, and

s̄1 =
7
16

+
1
2

γE − ln2' 0.032960651891, (3.9)

s̄2 =
109
176
− b1

2b2
0
=

383
1936

' 0.19783057851, (3.10)

with b0 = 1
(4π)2

11
3 Nc, b1 = 1

(4π)4
34
3 N2

c , and Nc = 3. Note that a non-perturbative determination
of αU,E(t) is also proposed recently [15, 19].

There are two important observations: (i) The right-hand side of Eq. (3.6) is independent of
the regularization because of its UV finiteness, so that one can take, e.g., the lattice regularization
scheme; (ii) since flowed fields at t > 0 depend on the fundamental fields at t = 0 in the space-
time region of radius

√
8t, the statistical noise in calculating the right-hand side of Eq. (3.6) is

suppressed for finite t.

4. Numerical procedure on the lattice

The formula Eq. (3.6) indicates that T R
µν(x) can be obtained by the small t limit of the gauge-

invariant local operators defined through the gradient flow. To perform the numerical analysis on
the lattice, we take the following steps:

1. Generate gauge configurations at t = 0 on a space-time lattice with a standard algorithm with
the lattice spacing a and the lattice size N3

s ×Nτ .

2. Solve the gradient flow for each configuration to obtain the flowed link variables for t > 0.

5
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Nτ 6 8 10 T/Tc

6.20 6.40 6.56 1.65
β 6.02 6.20 6.36 1.24

5.89 6.06 6.20 0.99

Table 1: Values of β and Nτ for each temperature for Setting 1 [12].

Nτ 10 12 14 16 20
Ns 64 64 64 64 128
β 6.829 6.971 7.093 7.200 7.376

Table 2: Values of Nτ , Ns and β for T/Tc = 2.31 for Setting 2.

3. Construct Uµν(t,x) and E(t,x) in terms of the flowed link variables at each t.

4. Determine the right hand side of Eq. (3.6) for each t, and measure expectation values and
correlation functions of the EMT by regarding the right hand side of Eq. (3.6) as the EMT.

5. Carry out an extrapolation toward (a, t) = (0,0).

Note that this analysis has to be performed in the fiducial window, a�
√

8t� R. Here, R is an
infrared cutoff scale such as Λ

−1
QCD or T−1 =Nτa at which the perturbative analysis used in Eq. (3.6)

is violated. The first inequality is necessary to suppress finite a corrections, while the second one is
required to suppress non-perturbative corrections and finite volume effects. We will later see that
the upper limit of the fiducial window R is given by by T−1 = Nτa for temperatures analyzed in
this study.

5. Numerical setup

To demonstrate that Eq. (3.6) can successfully be used in the measurement of the EMT on
the lattice, we consider the SU(3) gauge theory defined on a four-dimensional Euclidean lattice,
whose thermodynamics has been extensively studied by the integral method [4, 20, 21, 22]. We
consider the Wilson plaquette gauge action under the periodic boundary condition with several
different β = 6/g2

0 with g0 being the bare coupling constant. The gradient flow in the t-direction is
numerically solved by the Runge–Kutta method. We have checked that the accumulation errors due
to the Runge–Kutta method is more than two order smaller than the statistical errors in all analyses.

The numerical analyses reported in the following have been performed with the following two
settings.

• Setting 1: The first analysis is performed on N3
s ×Nτ = 323× (6,8,10) lattices [12]. Gauge

configurations are generated by the pseudo-heatbath algorithm with the over-relaxation, mixed
in the ratio of 1 : 5. We call one pseudo-heatbath update sweep plus five over-relaxation
sweeps as a “Sweep”. To eliminate the autocorrelation, we take 200–500 Sweeps between
measurements. The number of gauge configurations for the measurements at finite T is 300.

6
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Statistical errors are estimated by the jackknife method. To relate T/Tc and corresponding
β for each Nτ , we first use the relation between a/r0 (r0 is the Sommer scale) and β given
by the ALPHA Collaboration [23]. The resultant values of Tr0 = [Nτ(a/r0)]

−1 are then con-
verted to T/Tc by using the result at β = 6.20 in Ref. [4]. Nine combinations of (Nτ ,β ) and
corresponding T/Tc obtained by this procedure are shown in Table 1.

• Setting 2: The second analysis is performed on finer lattices with Ns = 64 and 128 with
several values of Nτ . The lattice spacing of each β are determined originally [24] by the
measurements of t0 [10] and w0 [25] with the gradient flow, and the simulation is performed
for several values of T/Tc. In this manuscript, we present the result only for T/Tc = 2.31.
The parameters β , Nτ and Ns for this T are shown in Table 2. To eliminate the autocorre-
lation, we take 200 Sweeps between configurations. The estimate of the statistical error by
the jackknife method suggests that the autocorrelation between each configuration is well
suppressed. The typical number of gauge configurations for each measurement at finite T is
2000.

To analyze the EMT with Eq. (3.6), we measure Ga
µν(t,x) written in terms of the clover leaf

representation on the lattice. To subtract out the T = 0 contribution, 〈E(t,x)〉0, we carry out simu-
lations on a Nτ = Ns lattice for each β . Note that this vacuum subtraction is required only for the
measurement of the trace anomaly ∆ = ε−3P, while no subtraction is needed for the measurement
of the entropy density s= (ε+P)/T . For ḡ in αU(t) and αE(t) given by Eqs. (3.7) and (3.8), we use
the four-loop running coupling with the scale parameter determined by the ALPHA Collaboration,
ΛMS = 0.602(48)/r0 [26]. In the following, we present the numerical results of the thermodynam-
ics for two Settings in Secs. 6 and 7, respectively, and then discuss the correlation function of the
EMT in Setting 2 in Sec. 8.

6. Thermodynamics: Setting 1

In this section, we first present the numerical results on bulk thermodynamics obtained by the
Setting 1 [12]. In Fig. 1, we show the results for the dimensionless trace anomaly ∆/T 4 = (ε −
3P)/T 4 and the dimensionless entropy density s/T 3 = (ε +P)/T 4 at T = 1.65Tc as a function of
the dimensionless flow parameter

√
8tT [12]. The bold bars denote the statistical errors, while the

thin (light color) bars show the statistical and systematic errors including the uncertainty of ΛMS.
We found that the statistical error is dominant in the small t region for both ∆/T 4 and s/T 3, while
the systematic error originating from the scale parameter becomes significant for s/T 3 in the large
t region.

The fiducial window discussed in Sec. 4 is indicated by the dashed lines in Fig. 1. The lower
limit of the window, beyond which the lattice discretization error grows, is set to be

√
8tmin = 2a,

where we take into account the fact that our clover leaf operator extends the size 2a. The upper
limit of the window, beyond which the smearing by the gradient flow exceeds the temporal lattice
size, is set to be

√
8tmax = 1/(2T ) = Nτa/2.

The data in Fig. 1 show, within the error bars, that (i) the plateau appears inside the preset
fiducial window (2/Nτ <

√
8tT < 1/2) for each Nτ , and (ii) the plateau extends to the smaller t

region as Nτ increases or equivalently as a decreases. It should be remarked that only 300 gauge
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/8t T^

over
smeared2a > sqrt(8t)

for Nτ =10

for Nτ =8

for Nτ =6

Figure 1: Flow time dependence of the dimensionless interaction measure (top panel) and the dimensionless
entropy density (bottom panel) for different lattice spacings at fixed T/Tc = 1.65 [12]. The circles (red) the
squares (blue), and the diamonds (black) correspond to Nτ = 6, 8, and 10, respectively. The bold error bars
denote the statistical errors, while the thin error bars (brown, cyan, and magenta) include both statistical and
systematic errors.

configurations are necessary to obtain these results. Similar plateaues as in Fig. 1 also appear
inside the fiducial window for other temperatures, T/Tc = 1.24 and 0.99, with comparable error
bars. These features imply that the double extrapolation (a, t)→ (0,0) is indeed possible.

Our lattice results at fixed T with three different lattice spacings allow us to take the continuum
limit. First, we pick up a flow time

√
8tT = 0.40 which is in the middle of the fiducial window.

Then we extract ∆/T 4 and s/T 3 for each set of Nτ and β . In the left panel of Fig. 2, resultant values
taking into account the statistical errors (bold error bars) and the statistical plus systematic errors
(thin error bars) are shown. The lattice data for ∆/T 4 with the same lattice setup at Nτ = 6 and 8
in Ref. [4] are also shown by the cross (green) symbols in the top panel; our results with 300 gauge
configurations have substantially smaller error bars at these points.

We note that the continuum extrapolation in this analysis [12] is taken with fixed t; this proce-
dure is graphically shown in Fig. 3 (a). Strictly speaking, however, the double limit (a, t)→ (0,0)
has to be taken as mentioned above. Although we have checked that different choices of t do not
change the final results within the error bar as long as it is in the plateau region in the analysis in
Setting 1, in the next section we will see that the limit with fixed t shows a deviation compared
with the double limit when the statistics is improved.

The horizontal axis of the left panel of Fig. 2, 1/N2
τ , is a variable suited for making continuum

extrapolation of the thermodynamic quantities [4]. We consider two ways of extrapolation: A linear
fit with the data at Nτ = 6, 8, and 10 (the solid lines in the left panel of Fig. 2), and a constant fit with

8
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our result
Borsanyi et. al.

Okamoto et. al.
Boyd et. al.

Figure 2: Left: Continuum extrapolation of the thermodynamic quantities for T/Tc = 1.65, 1.24, and 0.99.
Solid lines and dashed lines correspond to the three-point linear fit and two-point constant fit as a function
of 1/N2

τ , respectively. Extrapolated values of the former (latter) are shown at 1/N2
τ = 0 (1/N2

τ = −0.001).
The cross symbols in the top panel are the data of Ref. [4] with the same lattice setup. Right: Continuum
limit of the interaction measure and entropy density obtained by the gradient flow for T/Tc = 1.65, 1.24,
and 0.99 with 300 gauge configurations. The results obtained by the integral method in Refs. [4], [20] and
[22] are also plotted.

the data at Nτ = 8 and 10 (the dashed lines in the left panel of Fig. 2). In both fits, the correlation
between the errors due to the common systematic error from ΛMS is taken into account. The former
fit is used to determine the central value in the continuum limit whose error is within±12% even at
our lowest temperature. The latter is used to estimate the systematic error from the scaling violation
whose typical size is ±4% at high temperature and ±24% at low temperature.

We have analyzed various systematic errors; the perturbative expansion of αU,E(t), the running
coupling ḡ, the scale parameter, and the continuum extrapolation. We found that the dominant
errors in the present lattice setup are those from ΛMS and the continuum extrapolation, which are
included in the left panel of Fig. 2. To reduce these systematic errors, finer lattices are quite helpful:
They make the plateau in

√
8tT wider by reducing the lower limit of the fiducial window, so that

the continuum extrapolation becomes easier. Also, larger aspect ratio Ns/Nτ would be helpful to
guarantee the thermodynamic limit.

Finally, we plot, in the right panel of Fig. 2, the continuum limit of ∆/T 4 and s/T 3 obtained by
the linear fit of the Nτ = 6, 8, and 10 data (the solid lines) in the left panel of Fig. 2 for T/Tc = 1.65,
1.24, and 0.99. For comparison to the existing data of the SU(3) gauge theory after the continuum
extrapolation, the results of Refs. [4] [20] and [22] obtained by the integral method are also plotted
in the right panel of Fig. 2. The results of the two different approaches are consistent with each other
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22

Figure 3: Continuum extrapolation in Setting 1 (a) and Setting 2 (b).
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Figure 4: Flow time dependence of the dimensionless entropy density s = (ε +P)/T at T/Tc = 2.31 for
several values of Nτ with Ns = 64 and 128. The same result is plotted as functions of

√
8tT (left panel) and

tT 2 (right panel). The errorbars denote statistical error.

within 2 sigma level. The figure, however, indicates that our results underestimate the observables
compared with the previous ones. This discrepancy in part come from the continuum extrapolation
with fixed t. The correct double limit will be discussed in the next section.

7. Thermodynamics: Setting 2

Next, let us see the numerical results on thermodynamics with finer lattices with Setting 2. In
the left panel of Fig. 4, we show the dimensionless entropy density s/T 3 = (ε+P)/T 4 as a function
of
√

8tT for T/Tc = 2.31 with Ns = 64 and 128 for several values of Nτ . In this result, one can take
a closer look at the t dependence of s/T 3 thanks to the improved statistics and finer lattices. In the
previous section, we discussed that a plateau is observed in the fiducial window, 2a <

√
8t < 1/T ,

in Setting 1. Because the statistics is significantly improved in Setting 2, in Fig. 4 one sees a t
dependent structure in the fiducial window with Nt = 10. Next, while the t dependence at small t
becomes more stable as the lattice spacing becomes finer, the t dependence does not show a plateau
even on the finest lattice with Nτ = 20. In the right panel of Fig. 4, the same result is shown as a
function of tT 2 instead of

√
8tT . The figure indicates that s/T 3 behaves as a linear function of t as

the lattice spacing becomes finer.
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Figure 5: Continuum extrapolation of s and ∆. Double extrapolation (a, t)→ (0,0) is taken by taking a→ 0
limit with fixed t/a2 = 1.0 and 1.3.

The origin of the linear term can be understood as the contribution of higher dimensional
operators in Eq. (3.6) giving rise to O(t) contribution to this formula. In fact, the contribution
of dimension six operators are proportional to t in t → 0 limit. Figure 4 shows that the effect of
these terms has nonnegligible contribution. Such a contribution has to be subtracted to measure
thermodynamic quantities. A similar result is obtained for ∆/T 4, while the t dependence is weaker
than the one in s/T 3.

The O(t) effect discussed here can be eliminated by taking the double limit (a, t)→ (0,0). In
order to take this double extrapolation, in this analysis we take a→ 0 limit with fixed t/a2; this
procedure is graphically shown in Fig. 3 (b). Here, the ratio t/a2 has to be sufficiently large so that
t and a satisfy the condition 2a <

√
8t, or t/a2 > 1/2. Once this condition is satisfied, however,

the double limit can be taken safely irrespective of the value of t/a2. In this extrapolation, it is
expected that the discretization effect is of order a2. This is because the leading discretization error
on thermodynamic observables is order a2 [4], while the error arising from nonzero t is of order t.

In Fig. 5, we show the result of the continuum extrapolation for s/T 3 and ∆/T 4 with fixed
t/a2 for t/a2 = 1 and 1.3. We choose 1/N2

τ for the horizontal axis and take a linear extrapolation
because of the a dependence discussed above. The result shows that the continuum extrapolation
is stable and the extrapolations with different t/a2 are consistent. Because of the negative slope
in Fig. 4, the continuum extrapolation of s/T 3 obtained in this method gives slightly larger value
compared with the result in the previous section. The final results after the double extrapolation are
consistent with the existing results in the integral method [4, 22].

8. Correlation function

Once the operator of the EMT on the lattice is obtained, the application of this operator is not
limited to the bulk thermodynamics which is given by expectation values of one point functions. In
this section, as an example of other applications we consider the correlation function of the EMT.
As discussed in Sec. 1, the correlation functions of the EMT are important observables related to
transport properties of the medium and fluctuations.

11
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Figure 6: Imaginary time correlation function of the total energy, CE(τ)/T 5 = 〈δ T̄00(τ)δ T̄00(0)〉/(V T 5),
for several values of t/a2 for T/Tc = 2.31 obtained on 643×16 lattice.

In this manuscript, as an example of such analyses we present the numerical result on the
Euclidean correlation function of the total energy,

CE(τ) =
1
V
〈δ T̄00(τ)δ T̄00(0)〉, (8.1)

with T̄00 =
∫

d3xT00(x,τ) and δ T̄00 = T̄00−〈T̄00〉
When one investigates correlation functions of the EMT with Eq. (3.6), one has to take care of

the cooling nature of the gradient flow. When correlation functions are observed on this field, the
smearing nature gives rise to artificial correlations in two point correlators when the two operators
are not separated twice the smearing length. Because of Eq. (2.2), the smearing radius defined by
the mean square distance in four dimensional space is

√
8t [10]. When one focuses on a smear-

ing along one definite direction, on the other hand, the smearing length is
√

2t. Therefore, the
correlation function Eq. (8.1) receives an artificial effect due to the smearing for τ . 2

√
2t.

Keeping this precaution in mind, let us see the numerical result on Eq. (8.1). In Fig. 6, we
show τ dependence of the correlator Eq. (8.1) for several values of the flow time t for T/Tc =

2.31 and Nτ = 16. From the figure, one can see several interesting features. First, CE(τ) takes a
large value for τ . 2

√
2t in which the above-mentioned smearing problem affects the correlation

function. The enhancement of CE(τ) at τ . 2
√

2t has a clear t dependence, which indicates that this
enhancement is indeed the artificial behavior arising from the gradient flow. On the other hand, the
correlator for τ & 2

√
2t does not have a statistically significant t dependence. This result implies

that the correlation function can be obtained in this range. Second, the errorbars of the result are
more suppressed for larger t. For t/a2 = 1.9, the error is less than 10% with 2000 configurations.
Compared with the previous studies on the EMT correlators [3, 2], this number of statistics is
significantly small.

12
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Figure 6 also shows that the correlator Eq. (8.1) takes a constant within statistics in the range
τ & 2

√
2t at which the smearing effect is well suppressed. This result can be understood as a

consequence of the energy conservation, because the energy conservation requires

∂

∂τ
CE(τ) = 〈

∂

∂τ
T̄00(τ)T̄00(0)〉= 0, (8.2)

for τ 6= 0. The emergence of a plateau in Fig. 6, therefore, shows that the EMT defined in Eq. (3.6)
satisfies the energy conservation.

The constant of CE(τ) gives the thermal fluctuation of the total energy in grand canonical
ensemble, i.e.

〈δ T̄ 2
00〉

V
=CE(τ), (8.3)

where the value of τ in this formula must satisfy τ & 2
√

2t in order to avoid the smearing problem.
In the continuum theory the value of τ in Eq. (8.3) is arbitrary except for τ = 0 because of Eq. (8.2).

Combining Eq. (8.3) with the linear-response relation Eq. (1.3), one can make an estimate of
the specific heat by reading the value of CE(τ) in the plateau region in Fig. 6. Here, we use the
value of CE(τ) at midpoint τ = β/2. The specific heat is then obtained as

cV/T 3 = 15.3(36) for T/Tc = 2.31. (8.4)

In the analysis of the specific heat of the SU(3) gauge theory in Ref. [27] using the differential
method, the values are estimated as cV/T 3 = 15(1) for T/Tc = 2 and cV/T 3 = 18(2) for T/Tc = 3.
Although we have not taken the continuum extrapolation, it is notable that our result in Eq. (8.4) is
consistent with the one in Ref. [27]. This result opens a possibility to measure the specific heat in
a novel method using the linear-response relation Eq. (1.3).

9. Summary and outlook

In this study, we analyzed the expectation values and correlation functions of the energy-
momentum tensor (EMT) on the lattice using the EMT operator Eq. (3.6) defined by the gradient
flow and the small flow time expansion. Our results show that the numerical analyses of the EMT
on the lattice with Eq. (3.6) work quite successfully. In fact, the thermodynamics observables
analyzed in our approach agree with the previous results using integral method. Besides, the result
on the energy-energy correlator is consistent with the conservation law and the linear-response
relation Eq. (1.3). Moreover, our approach can perform these measurements with a significantly
small statistics compared with the previous methods.

As discussed at the beginning of this manuscript, the measurement of the EMT on the lattice
has been a difficult subject, although the EMT is one of the most fundamental quantities in physics.
Since the EMT defined by Eq. (3.6) can become a solution of this longstanding problem, there are
a lot of applications of the present study. Among them, the accurate measurement of the correla-
tion functions of the EMT is one of the most interesting subject. While we have only presented
the numerical result on the energy-energy correlator in this manuscript, the same analysis can be
performed for various channels. In particular, the correlation functions of the spatial components
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of the EMT, T12 and ∑i Tii, are interesting because they are related with shear and bulk viscosity,
respectively, via Kubo formulas. The measurements of these correlators with Eq. (3.6) thus would
enable us a stable analysis of these quantities on the lattice. Furthermore, the measurements of
the energy and momentum distributions in hadrons and flux tube will also be possible using the
EMT operator in Eq. (3.6). These analyses will reveal various aspects of the hadron structure and
confinement. The application of this method to full QCD with fermion fields is another important
future study [16, 17]. These analyses will be reported elsewhere.
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