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1. Introduction

Our satisfaction at the discovery of the Higgs Boson is tempered, only temporarily we hope,
by the absence of the discovery of new physics at the Large Hadron Collider (LHC). A key com-
plementary tool to large ET searches for signs of physics Beyond the Standard Model (BSM) is
precision flavour physics. If after more detailed analysis of LHC data generated before the current
shutdown, or of LCH14 data generated in the future, new particles are discovered then precision
flavour physics will be necessary to unravel the underlying theoretical framework. We should also
not underestimate the discovery potential of flavour physics; an unambiguous inconsistency be-
tween the standard model prediction of a weak-decay rate or CP-asymmetry and the corresponding
experimental measurement would signal new BSM particles and couplings. Indeed it is perhaps
surprising that no such unambiguous inconsistencies have arisen up to now. Precision flavour
physics requires quantitative control of hadronic effects for which lattice QCD simulations are
essential.

At this conference we have seen the continued, hugely impressive, improvement in the pre-
cision of lattice calculations for a wide range of quantities. As an example of the improved pre-
cision consider the renormalisation group invariant BK parameter of neutral kaon mixing. At the
2013 conference on high-energy physics [1] I quoted B̂K = 0.766(10) from the compilation of the
Flavour Physics Lattice Averaging Group (FLAG) [2]. Twenty years earlier at the same conference
I quoted B̂K = 0.8(2) [3]. Not only has the error decreased by a factor of 20, but our confidence
in estimating the uncertainty is much greater that it could ever be in the era of quenched simu-
lations with pion masses in the region of 500 MeV - 1 GeV. For further examples of impressive
improvement in precision see table 2 below for the FLAG compilation of pseudoscalar leptonic
decay constants. The twofold challenge now for our community is to maintain the improvement
in precision in the calculation of standard quantities and to increase the range of physical quan-
tities which can be made accessible to lattice simulations. With this in mind, in this talk I will
discuss the extension of the evaluation of matrix elements to include non-local effects. In standard
computations we evaluate matrix elements of the form 〈0|O(0) |h〉 or 〈h2|O(0) |h1〉 where O is a
local composite operator and h,h1,2 are hadronic states. For the quantities discussed in this talk,
the matrix elements are of time-ordered products of two local composite operators integrated over
their positions (see eq.(1.1)).

I will discuss 3 topics in which the contributing matrix elements are of non-local operators
involving long-distance effects:

1. The calculation of the KL-KS mass difference, ∆mK = mKL −mKS . This work is being per-
formed with colleagues from the RBC-UKQCD collaboration and the current status was
reviewed by Z. Bai at this conference [4].

2. The study of rare kaon decays K→ π`+`− or K→ πνν̄ . This work is also being performed
with colleagues from the RBC-UKQCD collaboration and has been summarised at this con-
ference by X. Feng [5].

3. The evaluation of the electromagnetic corrections to weak decay amplitudes [6].

Before discussing these specific processes however, I start by considering a common issue for all
such studies of long-distance effects, i.e. how to construct the initial and final states and yet be able
to integrate over the positions at which the operators are inserted.
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h1 h2

t1 t2

n

O1 O2

tA tB

tx ty

Figure 1: A schematic diagram to illustrate the integrated matrix element in eq. (1.1). The hadrons h1 and h2

are created and annihilated by interpolating operators located at t1 and t2 respectively and the time positions
of the operators O1,2 are integrated between tA and tB. n represents a generic intermediate state between the
two operators.

1.1 The fiducial volume

The generic non-local quantity which we will be considering when studying ∆mK or rare kaon
decays is of the form ∫

d4x
∫

d4y 〈h2 |T{O1(x)O2(y)}|h1〉 , (1.1)

where O1,2 are composite operators and |h1,2〉 are single-hadron states1. In infinite spatial and
temporal Minkowski volumes, one first constructs the asymptotic in- and out-states |h1〉 and 〈h2|
and then integrates over all x and y, and in particular over the times tx,y. A corresponding practical
procedure in finite-volume Euclidean simulations is to integrate over a large subinterval in time
tA ≤ tx,y ≤ tB, but to create h1 and to annihilate h2 well outside of this region to allow for the
isolation of the single-particle external state. We call the 4-dimensional volume between the time
slices at tA and tB, the fiducial volume. This procedure will be discussed in some detail in sections 2
and 3 below.

2. The KL-KS mass difference

The material in this section is based on the work of the RBC and UKQCD collaborations
reported in [7, 8] and updated in Z.Bai’s talk at this conference [4]. The KL-KS mass difference is
known with excellent precision,

∆mK ≡ mKL−mKS = 3.483(6)×10−12 MeV (2.1)

and it is a challenge for our community to compute the non-perturbative QCD effects in order to
be able either to reproduce such a value in the standard model or to convincingly demonstrate an
inconsistency which would signal the presence of new physics. Such a tiny value of ∆mK can
potentially set strong constraints on physics beyond the standard model and historically led to
the suggestion of the existence of the charm quark with an estimate of the corresponding mass
scale [9–11].

Within the standard model, ∆mK arises from K0–K̄0 mixing at second order in the weak inter-
actions:

∆MK = 2P ∑
α

〈 K̄ 0 |HW |α〉〈α |HW |K0〉
mK−Eα

, (2.2)

1One can also exploit translational invariance and set either x or y to be the origin for example.
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where the sum over intermediate states |α〉 includes an energy-momentum integral and P indicates
that the principal value of the pole in (2.2) is to be taken.

For ∆mK , in figure 1 and eq. (1.1) we take h1 = K0, h2 = K̄0 and both O1,2 to be the effective
∆S = 1 weak Hamiltonian HW . Its lattice determination begins with the evaluation of the integrated
correlation function:

C4(tA, tB; t1, t2) =
1
2

tB

∑
ty=tA

tB

∑
tx=tA
〈0 |T

{
K̄0(t2)HW (ty)HW (tx) K̄0(t1)

}
|0〉 , (2.3)

where the integral over the 3-dimensional spatial positions of all 4 operators is implicit. Inserting
complete sets of states between the operators and integrating tx,y between tA and tB we find:

C4(tA, tB; t1, t2) = |ZK |2e−mK(t2−t1)∑
n

〈K̄0 |HW |n〉〈n |HW |K0〉
(mK−En)2 ×{

e(MK−En)T − (mK−En)T −1
}
. (2.4)

where T = tB− tA +1. From the coefficient of T we can therefore obtain

∆mFV
K ≡ 2∑

n

〈K̄0 |HW |n〉〈n |HW |K0〉
(mK−En)

, (2.5)

where the superscript FV reminds us that the quantity has been evaluated on a finite volume. We
will discuss the finite-volume corrections below.

A generic feature in the evaluation of matrix elements of bilocal operators is the presence of
terms which (potentially) grow exponentially in T . In this case we see from eq. (2.4) that this will
be the case if there are intermediate states n with energies En < mK . Among such terms are the π0

and vacuum intermediate states whose contribution can be identified and subtracted numerically
(leading to some loss of precision). Alternatively we can exploit the fact that one can add terms
proportional to the scalar density s̄d or the pseudoscalar density s̄γ5d without changing physical
quantities, ∆mK in particular, and choose the corresponding coefficients so that 〈π0 |HW |K〉 and
〈0 |HW |K〉 are both zero, where HW is now the Hamiltonian after the subtraction. In practice it may
not always be optimal to chose the coefficients of the densities in this way, e.g. in [4] for simulations
at unphysical masses it was more effective to remove the contribution of the η-meson instead of
the pion. In addition to the vacuum and single pion states, for physical quark masses there are also
two-pion (and three-pion) contributions with energies Eππ < mK whose exponentially growing
contributions have to be subtracted numerically. Moreover the number of states with energies less
than mK grows as the volume increases, although in the foreseeable future it is likely that there will
only be one or two such states.

The ∆S = 1 effective Weak Hamiltonian takes the form:

HW =
GF√

2 ∑
q,q′=u,c

VqdV ∗q′s(C1Qqq′
1 +C2Qqq′

2 )

where the {Qqq′
i }i=1,2 are current-current operators, defined as:

Qqq′
1 = (s̄iγ

µ(1−γ
5)di) (q̄ jγ

µ(1−γ
5)q′j) and Qqq′

2 = (s̄iγ
µ(1−γ

5)d j) (q̄ jγ
µ(1−γ

5)q′i) . (2.6)
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Figure 2: Contribution to the correlation function C4.
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Figure 3: The four types of diagram contributing to the correlation function C4 from which ∆mK is obtained.

i and j are colour labels and the spinor indices are contracted within each set of brackets.
The ultraviolet component of the evaluation of ∆mK is particularly benign, provided that one

performs the computation in the four-flavour theory and includes the charm quark. Of course each
of the two weak Hamiltonians has to be renormalised and I assume that this has been done. In
addition, one might expect that additional divergences will arise from regions of the integration
space when x and y approach each other. For example in the inner loop of the diagram in Fig. 2,
the u-quark contribution can be seen by power counting to be quadratically divergent. Not only is
the quadratic divergence cancelled by the GIM mechanism when the charm quark is included but,
because of the chiral structure of the operators Q1,2 in eq. (2.6), so do the logarithmic ones [7]. The
short distance contributions come from distances of O(1/mc) and not of the order of the ultraviolet
cutoff, the lattice spacing a.

The RBC-UKQCD collaboration has been performing exploratory calculations of ∆mK , start-
ing with a calculation of only the diagrams of Types 1 and 2 on a 163 lattice with a−1 = 1.73GeV
and mπ ' 420MeV [7]. In a more recent study we have performed a full calculation of all
graphs, on a 243 lattice with the same lattice spacing, with the domain wall fermion (DWF) and
the Iwasaki gauge action, and with mπ = 330MeV, mK = 575 MeV, mMS

c (2GeV) = 949 MeV and
amres = 0.00308(4) [8]. At these unphysical quark masses we find

∆mK = 3.19(41)(96)×10−12 MeV , (2.7)

to be compared to the physical value of 3.483(6)×10−12 MeV. The agreement with the physical
value may well be fortuitous, but it is nevertheless reassuring to obtain results of the correct order.
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mπ mK mc a−1 L no. of configs.
171 MeV 492 MeV 592/750 MeV 1.37 GeV 4.6 fm 212

Table 1: Parameters of the simulation used in [4] to calculate ∆mK .

The systematic error is dominated by discretisation effects related to the charm quark mass, which
we estimate at 30%. In this computation mK < 2mπ and so we do not have any exponentially
growing contributions from two-pion intermediate states.

At this conference, Z.Bai presented a stays report of work in progress by the RBC-UKQCD
collaboration [4]. This is a calculation on the 323×64 coarse lattice (a−1 = 1.37(1) GeV) with do-
main wall fermions and the DSDR gauge action (see [12] for details of the ensemble) and which had
been used in the first computation of K→ (ππ)I=2 decay amplitudes [13, 14], where the subscript
I = 2 indicates that the total isospin of the two-pion final state is 2. The parameters of the simula-
tion are presented in table 1. The new feature of this study is that now mK > 2mπ which allows us to
study the effect of the two-pion intermediate state. The preliminary results of this calculation were
∆mK = (4.6±1.3)×10−12 MeV when mc = 750MeV and ∆mK = (3.8±1.7)×10−12 MeV when
mc = 592MeV. Only statistical errors are shown. In this calculation it is seen that the contributions
from the ππ intermediate state are very small (3-4%).

From this series of investigations we learn that a calculation of ∆mK at physical kinematics
and on ensembles with unquenched charm quarks will be possible in the very near future. For
the prospects for the calculation of the long-distance contributions to the indirect CP-violating
parameter εK see [15].

I end this section with a brief discussion of the finite-volume corrections which relate ∆mFV
K in

eq. (2.5), extracted from the correlation function C4 (eqs. (2.3) and (2.4)), to the physical value of
∆mK . Because of the pole at En =mK in eq. (2.5) this requires an extension of the Lellouch-Lüscher
formula for K → ππ decays [16]. Assuming that the dominant contribution comes from s-wave
rescattering of the two pions the relation is [17, 18]

∆mK = ∆mFV
K −2π V〈K̄0 |HW |n0〉V V〈n0 |HW |K0〉V

[
cotπh

dh
dE

]
mK

(2.8)

= ∆mFV
K −2π 〈K̄0 |HW |n0〉〈n0 |HW |K0〉 cot[πh(mK ,L)] , (2.9)

where h(E,L)π ≡ φ(q) + δ0(k), δ0 is the s-wave I = 0 ππ phase shift 2 and φ is a kinematic
function so that Lüsher’s quantisation condition is h(En,L) = n [19]. |n0〉 is a two-pion state with
energy En0 = mK and the subscript V in eq. (2.8) denotes that the matrix elements are those in the
finite-volume. More precisely(

dh
dE

)
mK

V〈K̄0 |HW |n0〉V V〈n0 |HW |K0〉V = 〈K̄0 |HW |n0〉〈n0 |HW |K0〉 , (2.10)

where on the right-hand side we have the infinite-volume matrix elements. The kaon state |K〉 has
been normalised relativistically throughout this discussion so that dh/dE is simply the two-pion
contribution to the Lellouch-Lüscher factor.

2Because of the ∆I = 1/2 rule, we neglect the contribution of the isospin 2 intermediate state, but this can be simply
included by adding the corresponding term on the right-hand side of eqs. (2.8) and (2.9).
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3. Rare Kaon Decays

Rare kaon decays which are dominated by short-distance flavour-changing neutral current
(FCNC) processes, K→ πνν̄ decays in particular, provide a potentially valuable window on new
physics at high-energy scales. The decays KL→ π0e+e− and KL→ π0µ+µ− are also considered
promising because the long-distance effects are reasonably under control using ChPT [20]. They
are sensitive to different combinations of short-distance FCNC effects and hence in principle pro-
vide additional discrimination to the neutrino modes. A challenge for the lattice community is
therefore to calculate the long-distance effects reliably. The existing phenomenology on rare kaon
decays is based largely on SU(3)L×SU(3)R ChPT and lattice calculations will also provide the op-
portunity for checking the range of validity of ChPT and evaluating the corresponding Low Energy
Constants.

As an example consider the decay KL → π0`+`− which has three main contributions to the
amplitude [20],

(i) short distance contributions corresponding to matrix elements of the local operators
(s̄γµd)( ¯̀γµ`) and (s̄γµd)( ¯̀γµγ5`). The hadronic (non-perturbative QCD) contribution is sim-
ply given by the form-factors of semileptonic K→ π`ν̄` decays, which are known to much
better precision than the remaining contributions.

(ii) long-distance indirect CP-violating contribution from the CP-even component of KL,
AICPV (KL→ π0`0`−) = εA(K1→ π0`+`−) and

(iii) the two-photon CP-conserving contribution KL→ π0(γ∗γ∗→ `+`−).

A summary of the corresponding phenomenology is presented in Ref. [21]. For example the
branching ratios for the CP-violating (CPV) components are written as:

Br(KL→ π
0e+e−)CPV = 10−12 ×

{
15.7|aS|2±6.2|aS|

(
Imλt

10−4

)
+2.4

(
Imλt

10−4

)2
}

(3.1)

Br(KL→ π
0
µ
+

µ
−)CPV = 10−12 ×

{
3.7|aS|2±1.6|aS|

(
Imλt

10−4

)
+1.0

(
Imλt

10−4

)2
}

, (3.2)

where aS is the (unphysical) amplitude for the decay KS'K1→ π0`+`− at momentum transfer q2 =

0. Using ChPT-based phenomenology, |aS| = 1.06+0.26
−0.21 but the sign of aS is unknown [21]. One

goal of future lattice calculations is the determination of aS, together with other similar quantities.
In addition however, we will be able to vary the external momenta and study the behaviour of the
amplitude as a function of q2. Using partially twisted boundary conditions [22, 23], this has been
done very successfully for the form factors in K`3 decays [24]. See [25] for a review of the current
status of the calculations of K`3 decay amplitudes.

From the above discussion we learn that we need to compute the amplitudes for the CP-
conserving decays KS→ π0`+`− and K+→ π+`+`− and start by considering [26]

T µ

i =
∫

d4xe−iq·x 〈π(p) |T{Jµ
em(x)Qi(0)}|K(k)〉 , (3.3)
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where Qi (i = 1,2) are operators in the effective Hamiltonian (see (3.12)) and Jµ
em is the electro-

magnetic current. Electromagnetic gauge invariance implies that T µ

i takes the form

T µ

i =
ωi(q2)

(4π)2

{
q2(p+ k)µ − (m2

K−m2
π)qµ

}
. (3.4)

It is the form factor ω(q2) which will be the output of the calculation. The computation will
proceed in a similar way to the evaluation of ∆mK , by inserting the interpolating operators for the
initial kaon and final pion states at times which are sufficiently far from the "fiducial volume", i.e.
the range of integration over which the time of the insertion of the current is integrated.

Although the lattice computation does not rely on ChPT nevertheless, since most of the exist-
ing phenomenology is performed in the ChPT framework, it may be useful to compute the neces-
sary low energy constants. The LECs a+ and aS are defined by

a =
1√
2

V ∗usVud

{
C1ω1(0)+C2ω2(0)+

2N
sin2

θW
f+(0)C7V

}
(3.5)

where Q1,2 are the two current-current GIM subtracted operators and the Ci are the Wilson coeffi-
cients, (C7V is the coefficient of (s̄γµd)(l̄γµ l)) [27]. An interesting target for the lattice calculations
is to check the validity of the phenomenological values: a+ =−0.578±0.016 and |aS|= 1.06+0.26

−0.21,
as well as to determine the sign of |aS|.

The generic non-local matrix elements which we need to evaluate are (in Minkowski space)

X ≡
∫

∞

−∞

dtx d3x 〈π(p) |T
[

Jµ(0)HW (x)
]
|K(~0)〉 (3.6)

= i ∑
n

〈π(p) |Jµ(0) |n〉〈n |HW (0) |K(~0)〉
mK−En + iε

− i ∑
ns

〈π(p) |HW (0) |ns〉〈ns |Jµ(0) |K(~0)〉
Ens−Eπ + iε

. (3.7)

Jµ represents a vector or axial, electromagnetic or weak, current and {|n〉} and {|ns〉} represent
complete sets of non-strange and S = 1 strange states. In Euclidean space we envisage calculating
correlation functions of the form∫ Tb

−Ta

dtx 〈φπ(~p, tπ)T
[

Jµ(0)HW (tx)
]

φ
†
K(
~0, tK)〉 ≡

√
ZK

e−mK |tK |

2mK
XE
√

Zπ

e−Eπ tπ

2Eπ

, (3.8)

where φπ and φK are interpolating operators for the pion and kaon respectively, XE = XE− +XE+

and

XE− = −∑
n

〈π(p) |Jµ(0) |n〉〈n |HW (0) |K〉
mK−En

(
1− e(mK−En)Ta

)
and (3.9)

XE+ = ∑
ns

〈π(p) |HW (0) |ns〉〈ns |Jµ(0) |K〉
Ens−Eπ

(
1− e−(Ens−Eπ )Tb

)
. (3.10)

We use the time dependence to subtract the exponential terms in a similar way to the corresponding
subtractions for ∆mK . The spatial integral over~x is implicit in eq. (3.8).

The weak HW for this calculation is given by

HW =
GF√

2
V ∗usVud [C1(Qu

1−Qc
1)+C2(Qu

2−Qc
2)] , (3.11)

8
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γ∗
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K+ π+

s

u
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d

γ∗
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K+ π+

s

u

u,c

d

γ∗
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u,c

d

s

u,d

γ∗

K0 π0

Type 5

Figure 4: Sample diagrams which need to be evaluated to determine the amplitudes for K→ π `+`− decays.
For diagrams of type 1, 2 and 5 the photon can be emitted of any internal quark line. Diagrams of type 1 - 4
contribute to both K+→ π+`+`− and K0→ π0`+`− decays. The diagrams of type 5 only contribute to K0

decays.

Z0, γ

K π
s d

u, c

Figure 5: Contribution in spite of power counting is logarithmically divergent in the ultraviolet, in spite of
naïve dimensional counting. HW is represented by the two small filled circles.

where

Qq
1 = (s̄iγ

µ(1− γ5)di)(q̄ jγµ(1− γ5)d j) and Qq
2 = (s̄iγ

µ(1− γ5)d j)(q̄ jγµ(1− γ5)di) , (3.12)

and (i, j) are colour labels. Sample diagrams which have to be evaluated to determine the ampli-
tudes for K→ π `+`− decays are presented in Fig. 4.

The authors of ref. [26] investigated the ultraviolet behaviour as the current Jµ approaches
HW . For illustration consider the diagram of type 2 shown in Fig. 5, redrawn using the Fierz iden-
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π

K
π−

π+

γ∗

(a)

π

γ∗K

(b)

Figure 6: Two chiral perturbation theory diagrams contributing to the decay K→ πγ∗. For KS decays there
is an additional topology with a purely gluonic intermediate state.

tity. Dimensional counting allows for a quadratic divergence in such diagrams but conservation of
the vector current suggests that the degree of divergence is reduced by 2 to result in a logarithmic
divergence. For this to be the case the conserved lattice vector current must be used in the simu-
lations. This was checked in an explicit one-loop perturbative calculation for Wilson and Clover
fermion actions in [26]. This absence of power divergences does not require the use of the GIM
mechanism and for a chiral symmetric formulation of lattice QCD, such as DWF, the same applies
for the axial current. If the calculations are performed in the four-flavour theory, i.e. with charm
quarks, then the GIM mechanism also cancels the logarithmic divergence present in this diagram.

In chiral perturbation theory the leading contribution to the amplitude comes from diagram
(a) in fig. 6. For q2 < 4m2

π , the two pions are below threshold and there are no finite-volume
corrections which decrease as powers of the volume, leaving only ones which fall exponentially.
Indeed there are no power corrections coming from on-shell two-pion intermediate states. Inserting
the decomposition 〈π(p1)|Vµ |π(p2)π(p3)〉 = εµνρσ pν

1 pρ

2 pσ
3 F(s, t,u) , where s = (p1 + p2)

2, t =
(p1− p3)

2 and u = (p2− p3)
2, into the correlation function and integrating over the phase-space of

the two-pion state leads us to contract the ε tensor with two independent momenta (pK and pπ ) and
the Lorentz index of the γ∗ and hence we get zero. This leaves us with possible power corrections
from 3-pion intermediate states (see for example the diagram in Fig. 6(b)). Such diagrams are
higher order in chiral perturbation theory suggesting that they are relatively small, but this requires
further investigation.

There are very many diagrams to evaluate. For example for K+ decays we need to evaluate
the graphs obtained by inserting the electromagnetic current at all possible locations in the three-
point diagrams shown in fig. 7 (and adding the disconnected diagrams). For the first exploratory
numerical study we have only considered the W and C diagrams. The numerical study is being
performed on 243× 64 RBC-UKQCD ensembles using 2+1 flavours of Domain Wall Fermions
and the Iwasaki gauge action with mπ ' 420 MeV and a−1 ' 1.73 fm. [28]. The conserved, 5-
dimensional, vector current is used. We see from eq. (3.4) that the matrix element vanishes when
the kaon and pion are both at rest and so we have to give one or both of the mesons a momentum.
In fig. 8 I present some preliminary results with the choice~k = (1,0,0)2π/L and ~p =~0. In both
plots the kaon and pion interpolating operators are at tk = 0 and tπ = 28 and the vector current
is placed at tJ = 14. The left-hand plot is the unintegrated correlation function and the x-axis
is tH , the position of the weak Hamiltonian. The blue band is the result obtained assuming that
only the ground-state intermediate state contributes to XE− and XE+ and we see that the correlation
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Figure 7: The four three-point diagrams contributing to the K+ → π+ transition (W=wing, C=connected,
S=saucer and E=eye).
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Figure 8: The left-hand plot is the unintegrated correlation function with the kaon and pion sources at t = 0
and 28 respectively and the vector current fixed at t = 14. The x-coordinate is the position of HW . The
right-hand plot represent the correlation function integrated from the x-coordinate to 23. The green band
represents the exponentially growing term in (3.9) and the horizontal orange band has this removed.

function is approximately saturated by the ground-state contributions when tH is away from the
remaining operators. In the right-hand plot of fig. 8 we present the integrated correlator (3.8) with
Tb = 9 so that the integral over tH is from the x-coordinate to 23. It appears that the subtraction
of the exponentially growing term (in this case arising from the pion intermediate state) can be
performed and a result obtained. This project is still in its early stage, but these initial results are
very encouraging.

4. Electromagnetic Corrections to Weak Matrix Elements

At this conference, Antonin Portelli has reviewed recent calculations of the hadronic spectrum
in which electromagnetic effects are included. Here I present a proposed procedure to include
electromagnetic effects in weak matrix elements [6]. The motivation for this is that some of the
lattice results for these matrix elements are now being quoted with O(1%) precision, e.g. in tab. 2 I
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fπ fK fD fDs fB fBs

130.2(1.4) 156.3(0.8) 209.2(3.3) 248.6(2.7) 190.5(4.2) 227.7(4.5)

Table 2: Results for the leptonic pseudoscalar decay constants [2].The results are presented in MeV.

list the values of the decay constants compiled by the FLAG collaboration [2]. We therefore need to
start considering electromagnetic (and other isospin breaking) effects if we are to use these results
to extract CKM matrix elements at a similar precision. The principal new feature when calculating
electromagnetic effects in decay (and scattering) processes is the presence of infrared divergences,
and it is the treatment of infrared divergences in lattice simulations which is the main subject of
ref. [6].

In the following discussion, for illustration I consider leptonic decays of the pion but the
discussion is general and can be easily generalised to other leptonic and semileptonic decays. We
do not rely on chiral perturbation theory (ChPT), but for a ChPT based discussion of fπ , see [29].

4.1 Infrared divergences

The presence and cancellation of infrared divergences in physical processes in QED has been
understood for over 75 years now [30]. Using the leptonic decays of the pion for illustration, at
O(α) there is an infrared divergence in the amplitude for the process π+→ `+ν` (`= e,µ) which
arises from the integral over the momentum of the virtual photon and in the rate for the process
π+→ `+ν`γ from the region of phase-space in which the real final-state photon is soft. As is well
known [30], the infrared divergences cancel between contributions to the rate from diagrams with
real and virtual photons. For the foreseeable future it will be sufficient to restrict the calculations
to O(α) and only consider diagrams with a single virtual or real photon.

From the above, we see that when calculating O(α) corrections to the leptonic decays it is
necessary to consider together the processes π+ → `+ν` and π+ → `+ν`γ and to calculate the
combined width

Γ(π+→ `+ν`(γ)) = Γ(π+→ `+ν`)+Γ(π+→ `+ν`γ)≡ Γ0 +Γ1 , (4.1)

where the subscript 0 or 1 denotes the number of photons in the final state. The question for our
community is how best to combine this understanding with lattice calculations of non-perturbative
hadronic effects and it is this question which we now begin to tackle. I repeat that this is a generic
problem which needs to be solved if electromagnetic corrections are to be included in the evaluation
of decay processes.

At O(α0), i.e. without electromagnetic corrections, there is no photon in the final state and the
total width is given by

Γ(π+→ `+ν`) =
G2

F |Vud |2 f 2
π

8π
mπ m2

`

(
1− m2

`

m2
π

)2

. (4.2)

In this case the hadronic effects can be parametrised by a single number, the leptonic decay constant
fπ and lattice calculations of decay constants have been performed for several decades (see tab. 2).
Once the decay constants have been determined in lattice simulations they can be combined with
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the experimental measurements of the widths to obtain the corresponding CKM matrix elements.
Such a parametrisation of the widths in terms of a single decay constant does not apply at O(α).

In principle, particularly as techniques and resources improve in the future, it may become
possible (and perhaps better) to compute Γ1 over a large range of photon energies using lattice
simulations. At this stage however, we do not propose to compute Γ1 nonperturbatively. Instead
we consider only real photons which are sufficiently soft for the point-like (pt) approximation to
be valid. A cut-off ∆E of O(10-20MeV) appears to be appropriate both theoretically and exper-
imentally [31, 32]. At O(α) we therefore propose to calculate Γ0 +Γ1(∆E) for sufficiently small
∆E that Γ1(∆E) can be calculated using perturbation theory, neglecting the structure dependence
of the pion and treating it as an elementary pseudoscalar meson.

In order to facilitate control of the cancellation of infrared divergences we write:

Γ0 +Γ1(∆E) = lim
V→∞

(Γ0−Γ
pt
0 )+ lim

V→∞
(Γ

pt
0 +Γ1(∆E)) . (4.3)

The V→∞ limits are included as a reminder that lattice calculations are performed in finite volumes
and an extrapolation to infinite volume is then taken. Γ

pt
0 is an unphysical quantity. It is the width

obtained by treating the pion as as elementary pseudoscalar which can therefore be calculated in
perturbation theory.

By taking ∆E to be sufficiently small that structure dependent terms can be neglected, the
second term on the right-hand side of eq. (4.3) can be calculated in perturbation theory directly
in infinite volume. It is infrared convergent by the Bloch-Nordsieck mechanism [30], but it does
contain terms proportional to log∆E.

Γ0 is calculated nonperturbatively whilst Γ
pt
0 is calculated in perturbation theory, both in finite

volumes. In the infrared region Γ0 → Γ
pt
0 so that the first term on the right-hand side of eq. (4.3)

is also free of infrared divergences. The subtraction in the first term is performed for each of the
discrete photon momenta k and then the sum over k is performed. Note that the contribution of the
zero mode k = 0 naturally cancels in this subtraction.

4.2 GF at O(α)

The predicted widths depend on the Fermi constant GF which is practice is inferred from
the measured value of the muon lifetime, τµ . At O(α) one has to take care that the procedure
used to determine GF is consistent with that used in making predictions for the decays of hadrons.
Conventionally GF is determined from the expression [33, 34]

1
τµ

=
G2

Fm5
µ

192π3

[
1− 8m2

e

m2
µ

][
1+

α

2π

(
25
4
−π

2
)]

. (4.4)

This expression can be viewed as the definition of GF = 1.16632(2)×10−5 GeV−2.
In writing τµ as in eq. (4.4) many EW corrections have been absorbed into the definition of

GF ; the explicit O(α) corrections come from the three diagrams in the effective theory shown in
fig. 9 together with the diagrams with a real photon. The diagrams in fig. 9 are evaluated in the
W -regularisation [35] in which the Feynman-gauge photon propagator is modified by

1
k2 →

M2
W

M2
W − k2

1
k2 . (4.5)
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µ e

ν̄e

νµ

µ e

ν̄e

νµ

µ e

ν̄e

νµ

Figure 9: The three diagrams with a virtual photon contributing at O(α) to the muon lifetime in eq. (4.4).

Note that
1
k2 =

1
k2−M2

W
+

M2
W

M2
W − k2

1
k2 , (4.6)

and the contributions from the first term, which are generally ultraviolet divergent, are absorbed in
the definition of GF , whereas those from the second term in the three diagrams in fig. 9 result in the
explicit O(α) term in (4.4).

4.3 Proposed calculation of Γ0−Γ
pt
0

Most (but not all) of the EW corrections which are absorbed in GF are common to other
processes (including pion decay). This leads to a factor in the amplitude of (1 + 3α/4π(1 +

2Q̄) logMZ/MW ), where Q̄ = 1
2(Qu +Qd) = 1/6 [36, 37]. This is a tiny correction, but one which

can be included. We therefore need to calculate the pion-decay diagrams in the effective theory
with

Heff =
GF√

2
V ∗ud

(
1+

α

π
log

MZ

MW

)
(d̄Lγ

µuL)(ν̄`,L γµ`L) (4.7)

in the W -regularization.
Of course in practical calculations the lattice spacing a� 1/MW so that we cannot perform

the simulations directly in the W-regularization. However the operators in the W and bare lattice
and regularisations can be matched using perturbation theory. Thus for example, with the Wilson
action for both the gluons and fermions:

OW−reg
1 =

(
1+

α

4π

(
2loga2M2

W −15.539
))

Obare
1 +

α

4π

(
0.536Obare

2

+1.607Obare
3 −3.214Obare

4 −0.804Obare
5
)
, (4.8)

where

O1 = (d̄γ
µ(1− γ

5)u)(ν̄`γµ(1− γ
5)`) O2 = (d̄γ

µ(1+ γ
5)u)(ν̄`γµ(1− γ

5)`)

O3 = (d̄(1− γ
5)u)(ν̄`(1+ γ

5)`) O4 = (d̄(1+ γ
5)u)(ν̄`(1+ γ

5)`)

O5 = (d̄σ
µν(1+ γ

5)u)(ν̄`σµν(1+ γ
5)`) . (4.9)

The presence of the 5 operators in (4.9) is a manifestation of the breaking of chiral symmetry in
the Wilson theory.

The procedure is therefore to calculate the matrix elements of the bare lattice operators and
use perturbative relations such as (4.8) to match them to the W-regularization and eq. (4.7) is the
corresponding effective Hamiltonian. The details of the calculation of the correlation function
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Figure 10: Connected diagrams contributing to the correlation function at O(α) from which Γ0 is deter-
mined. The shaded circle represents the interpolating operator for the pion and the two filled circles represent
one of the four-fermion operators in (4.9). The wiggly line represents the photon.

from which Γ0−Γ
pt
0 is determined can be found in [6]. The connected diagrams can be found in

Fig. 10 and there are also disconnected diagrams to be evaluated. A relatively minor, but welcome
nonetheless, simplification is that the leptonic wave function renormalisation cancels in the sub-
traction Γ0−Γ

pt
0 and so does not have to be evaluated explicitly. The presence of diagrams such (e)

and (f), in which the photon links the hadronic and leptonic components, confirms that the result
cannot simply be written in terms of a generalised decay constant. In [6] it is demonstrated that
the necessary Euclidean-Minkowski continuation can indeed be performed and it is shown how the
matrix elements can be extracted.

4.4 Calculation of Γpt = Γ
pt
0 +Γ

pt
1

The calculation of Γpt = Γ
pt
0 +Γ

pt
1 is completely perturbative. The total width, Γpt was cal-

culated in 1958/9 using a Pauli-Villars regulator for the UV divergences and mγ for the infrared
divergences [33, 38]. This is a very useful check on our perturbative calculation. We add the label
pt on Γ1 here because the integrations include photon momenta for which the structure dependent
effects for a real pion should be included, whereas in these calculations the pion is treated as an
elementary point-like particle. For the proposed evaluation of the decay width, in which ∆E is suffi-
ciently small that structure dependent contributions can be neglected, Γ1(∆E)'Γ

pt
1 (∆E). However,

in order to cross-check our perturbative calculation with earlier results we keep ∆E unconstrained
here.

In ref. [6] we calculate Γ
pt
0 +Γ

pt
1 (∆E) for a general value of ∆E using the following Lagrangian

for the interaction of a point-like pion with the leptons:

Lπ-`-ν` = iGF fπV ∗ud
{
(∂µ − ieAµ)π

} {
ψ̄ν`

1+ γ5

2
γ

µ
ψ`

}
+h.c. .
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with the corresponding Feynman rules:

π+

ℓ+

νℓ

= −iGFfπV
∗
ud p

µ
π

1+γ5

2
γµ

(4.10)

π+

ℓ+

νℓ

γ∗

= ieGFfπV
∗
ud g

µν 1+γ5

2
γµ
·

We believe that this is a new result, and by setting ∆E to its maximum value, ∆E = mπ/2× (1−
m2
`/m2

π) we recover the earlier result as a check. Thus the calculation of the second term on the
right-hand side of eq. (4.3) is complete.

4.5 Concluding remarks

In this section we have seen how the cancellation of infrared diveregences à la Bloch-Nordsieck
can be implemented in lattice calculations of the electromagnetic corrections to decay widths. Al-
though challenging, the method is within reach of present simulations and we now plan to imple-
ment the procedure in an actual numerical computation.

Remaining theoretical issues to be investigated include the expected power-like finite-volume
corrections in Γ0−Γ

pt
0 . Since infrared divergences cancel in this difference and in a finite volume so

does the contribution of the zero momentum mode k = 0, where k is the momentum of the photon,
we would expect the finite-volume effects to be similar to those in the spectrum.

The matching factors between the bare lattice operators and those in the W-regularization have
been calculated for the Wilson and some related lattice actions in [6] at O(α). As the numerical
computations become performed it would be interesting to calculate the terms of O(α αs(a)).

In order to estimate the size of the structure dependent effects in Γ1(∆E) without computing
them in a lattice simulation some model input or approximations are necessary. In ref. [6] we use
chiral perturbation theory to estimate these effects for the pion and kaon. For decays into a muon the
effects are negligible even for ∆E much larger than our notional 20 MeV. For the electron, because
of a kinematic enhancement proportional to 1/m2

` , the effects start to become visible at around
20 MeV. For heavy mesons, and in particular for the B-meson, there is a natural small energy scale,
the hyperfine splitting mB∗ −mB ' 45MeV. Thus a B-meson can emit a relatively soft photon and
the hadronic matter can rearrange itself into the vector B∗ meson. We would expect this to result
in an earlier onset of significant structure dependent corrections and this needs to be investigated
further.

In the future one can envisage relaxing the condition ∆E� ΛQCD and to include the emission
of real photons with energies which do resolve the structure of the initial hadron. Such calculations
can be performed in Euclidean space under the same conditions as above, i.e. providing that there
is a mass gap. The natural generalisation of the present strategy would be to replace (4.3) by

Γ0 +Γ1(∆E) = lim
V→∞

(Γ0−Γ
pt
0 )+ lim

V→∞
(Γ1(∆E)−Γ

pt
1 (∆E))+ lim

V→∞
(Γ

pt
0 +Γ

pt
1 (∆E)) . (4.11)

Whereas in (4.3) we had envisaged ∆E being sufficiently small so that Γ1(∆E) can be calculated
in the point like approximation this is no longer the case here. Note that each of the three terms
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in (4.11) is separately infrared finite and also that the results from our perturbative calculation of
Γ

pt
0 +Γ

pt
1 (∆E) will still be necessary.

5. Summary

Standard lattice calculations of nonperturbative QCD effects in weak decays or hadronic struc-
ture are based on the evaluation of matrix elements of local composite operators. In this talk I have
discussed the evaluation of (nonlocal) long-distance effects through the computation of time or-
dered products of two local operators integrated over their positions. The general framework has
been applied to (i) the evaluation of ∆mK = mKL −mKS (for prospects for evaluating the indirect
CP-violation parameter εK see [15]); (ii) the computation of the amplitudes of the rare kaon decays
K→ π`+`− (for the evaluation of the K→ πνν̄ decay amplitudes see [5]) and (iii) the calculation
of the O(α) electromagnetic effects in weak decays of pseudoscalar mesons. The novelty in the
last case is the presence of infrared divergences which cancel between contributions to the width
with real and virtual photons.

For ∆mK the early results are very promising and strongly suggest that it will soon be possible
to perform a calculation at physical kinematics. For the rare kaon decays the numerical studies
are at an earlier stage but are progressing well and for the electromagnetic corrections they are just
beginning. These are very exciting times.

As the last speaker at this conference it is my privilege and pleasure, on behalf of all the
participants, to thank Norman Christ, Bob Mawhinney, Peter Petreczky and all the members of
the local organising committee for creating such a stimulating, enjoyable and beautifully organised
meeting.
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