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We determine the scaling behavior of the autocorrelation times of observables constructed from
the topological charge density on lattices with periodic and open boundary conditions using a
series of high-statistics numerical simulations. The autocorrelation functions of such observables
turn out to obey a simple differential equation which allows the motion of topological charge in
hybrid Monte Carlo simulations to be understood in terms of only two processes: diffusion and
tunneling. There is a characteristic lattice spacing at which open boundary conditions become
worthwhile for reducing autocorrelations and we show how this lattice spacing is related to the
diffusion constant, the tunneling rate, and the lattice Euclidean time extent. The subject of this

talk was treated in more detail in a paper recently published by the authors [1].
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1. Introduction

As lattice QCD simulations approach the continuum limit, the autocorrelation times of many
observables increase. For statistical errors to be fully under control, the total length of a simulation
must be much longer than any autocorrelation time, so this represents a danger for modern sim-
ulations of QCD which are pushing to finer lattice spacings. The topological charge in particular
shows a very rapidly increasing autocorrelation time as the lattice spacing a goes to zero [2, 3, 4, 5].
This results from the fact that in a periodic volume the topological charge of a continuum gauge
field cannot change along any continuous path through field space. The topological charge of a
lattice gauge field can change, but only by going through non-continuum-like configurations, and
these configurations become very rare close to the continuum limit. Therefore the simulation be-
comes trapped in a single topological sector of field space, tunneling between sectors only very
rarely.

In order to get around this it has been proposed to switch from periodic boundary conditions to
“open” boundary conditions on the gauge field for the Euclidean time direction [6]. In [6] evidence
was given that when open boundary conditions are used the integrated autocorrelation time of the
topological charge increases like 1/a* as a — 0, which is a much slower increase than expected
from periodic boundary conditions. This suggested that open boundary conditions can produce a
dramatic speedup of the topological charge in QCD simulations.

The purpose of the work presented in this talk is to directly compare the scaling behavior
of autocorrelations between periodic and open boundary conditions. In [6] only open boundary
conditions were simulated, so there was no direct comparison to periodic boundary conditions.
In addition to performing this raw numerical comparison we are able to develop a mathematical
model of autocorrelation times of topological observables which provides insight into how topo-
logical charge moves around the lattice and explains when open boundary conditions are useful for
reducing autocorrelations.

2. Simulations

We simulate pure SU(3) gauge theory using the DBW?2 gauge action at five lattice spacings in
the range 0.2 fm < a < 0.1 fm, keeping the physical volume fixed at (1.6 fm)? x 3.2 fm. At each
lattice spacing we run a pair of simulations, one with periodic and one with open boundaries in
the time direction. We use the DBW?2 action because it demonstrates the freezing of topology at
comparatively coarse lattice spacings, making the phenomenon easier to study [7]. On the periodic
lattices, as a is decreased from 0.2 fm to 0.1 fm the autocorrelation time of the topological charge
increases by roughly a factor of 100, as shown in Figure 1. This is the expected dramatic slowdown
of the topological charge with periodic boundary conditions.

To make a comparison between periodic and open boundaries we need to choose appropriate
observables. In particular we need to avoid the region of the lattice immediately adjacent to the
open boundaries. The reason is that the presence of the open boundaries distorts the simulated
physics near the boundary. We are only interested in whether open boundary conditions can speed
up simulations of infinite-volume physics, so we should avoid regions where the physics is not
similar to infinite-volume QCD. The effect of the open boundaries on various observables can be
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Figure 1: The integrated autocorrelation time of the global topological charge in MD time units on our
periodic lattices, with various fits to the data. In the first fit, k&, ~ 20; in the second fit k; ~ 0.90 fm; in the
third fit, k, ~ —6.

measured and we find in our simulations that if we stay at least 0.8 fm from the boundary then the
boundary effects are negligible.

The basic observable we study is the time slice topological charge Q(¢), which is the field-
theoretic topological charge density summed over the time slice at Euclidean time #. From this we
can build the subvolume charge Q(#;,1,), which is the topological charge density summed over the
Euclidean time interval #; <t < 1,. On periodic lattices we have the global charge Q = Q(0,T') (but
on open lattices the global charge is contaminated by boundary effects).

We collect very high statistics which allows us to precisely measure the integrated autocorre-
lation times of these observables even when these autocorrelation times are thousands of molecular
dynamics time units (MDU). In Figure 2 we plot the measured integrated autocorrelation times of
Q(T/2), the charge on the central time slice, and Q(7 /4,3T /4), the charge in the central half-
volume.

We see that, like Q in a periodic volume, these autocorrelation times are rapidly increasing as
a — 0. Furthermore we see that for a greater than some characteristic lattice spacing, here about
0.11 fm, open and periodic boundary conditions produce identical autocorrelation times, while for
a smaller open boundary conditions start to produce some speedup.

3. Diffusion model

Our main result is a mathematical model for topological autocorrelations which explains this
scaling behavior. Let Q(z,7) denote the topological charge on time slice ¢ at molecular dynamics
(MD) time 7. We define the correlation function

C(t,10,7) = (Q(t, 70+ 7)Q(t0, T0)) (3.1

Roughly speaking, this correlation function measures how much topological charge will move from
time slice 7y to time slice ¢ in an MD time interval T. We can measure this correlation function to
high precision and we find empirically that it obeys a simple differential equation to high accuracy:
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Figure 2: Measurements of the integrated autocorrelation times of the charge on the central time slice and
the charge in the central-half volume in MD time units. The “Model” curves are computed using the diffusion

model discussed below.
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This is a diffusion-decay equation: D(¢) is a t-dependent diffusion constant. The parameter Typn,
which we call the “tunneling timescale,” is related to the rate of tunneling between topological sec-
tors. On a periodic lattice it is the same as the integrated autocorrelation time of Q. The agreement
between Eq. (3.2) and our data is remarkably precise.

Eq. (3.2) applies to both periodic and open lattices. The boundary conditions on the gauge
field determine the boundary conditions on C: on periodic lattices C(¢,19,T) is periodic in both 7
and 7. On open lattices C(z,1y, T) goes to zero when either 7 or 1y is at a lattice boundary.

We use a fitting procedure to extract D(¢) and Tyn, on each of our ensembles. The values
obtained are consistent between our periodic and open ensembles except that we find that the
diffusion constant D(z) is enhanced in the immediate vicinity of an open boundary. In the bulk
D(t) is a constant D. As Figure 3 shows, we find that D scales essentially like a*>. Meanwhile the
tunneling timescale Ty, increases roughly like 1/ a® as a — 0, as shown in Figure 1.

In addition to the tunneling timescale there is also a diffusion timescale. Given a lattice Eu-
clidean time extent 7" and a diffusion constant D, the diffusion timescale is Tgi = T2 /8D, which is
the MD time to diffuse across half the lattice. This can be regarded as the time it takes topological
charge to diffuse into the center of the lattice from the open boundaries. Given the scaling of D,
Taie scales like 1/ a?, so that it increases much more slowly than Tyn,. As shown in Figure 4, on
coarse lattices Tyn, << Tgife and so we call these lattices “tunneling-dominated.” On fine lattices
Taitf << Twunn and we call these lattices “diffusion-dominated.”

Figure 4 shows that the transition between the tunneling- and diffusion-dominated regimes
is at a =~ 0.11 fm on our lattices, explaining why open and periodic boundaries start to differ at
this @ in Figure 2. In the tunneling-dominated regime we do not expect the boundary conditions
to have a large effect on autocorrelations because Tgs, the timescale on which the boundary can
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Figure 3: The scaling of the diffusion constant D with a. D/a? is roughly constant. The line is a linear fit to
the data.
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Figure 4: The diffusion and tunneling timescales as a function of a.

effect the bulk, is much shorter than 7y,,, the timescale on which autocorrelations are destroyed
by bulk tunneling. But in the diffusion-dominated regime open lattices can decorrelate much faster
than periodic lattices by creating and destroying topological charge at the boundaries and allowing
these changes to diffuse into the bulk.

The tunneling timescale Ty, depends on the details of the lattice action; it is well-known
that some lattice actions are more favorable than others for topological tunneling. The diffusion
timescale is probably less sensitive to the lattice action but does depend on the lattice Euclidean
time extent 7. Thus the lattice action and the time extent influence the location of the transition
between the tunneling-dominated and diffusion-dominated regimes.

This qualitative picture can be further sharpened by using Eq. (3.2) to actually calculate inte-
grated autocorrelation times. For example we obtain the model curves in Figure 2 by numerically
Eq. (3.2) using the known a-dependence of D and Ty, as inputs. The model curves fit the data
quite well. In some limits we can use Eq. (3.2) to calculate integrated autocorrelation times ana-
lytically. For example, we find for the integrated autocorrelation time of Q(7 /2) in various limits:
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T2t
Tint = 72Dtunn (tunneling-dominated limit)
woTl
Tint = 3D (diffusion-dominated limit, open boundaries) (3.3)
c
Tint = V 2ﬂ? Teunn (diffusion-dominated limit, periodic boundaries)

Here o is a length scale of about 0.2 fm (see [1]). This tells us that in the diffusion-dominated
limit this integrated autocorrelation time scales like 1/D ~ 1/a* for open boundaries, but like
Tounn ~ 1/ a® for periodic boundaries. It turns out that in this limit these scaling laws are shared by
all observables built from Q(z), for example the half-volume charge Q(T /4,3T /4).

4. Conclusions

We have shown that the autocorrelations of topological observables in lattice QCD simulation
are well-described by a simple mathematical model, Eq. (3.2), which incorporates only topolog-
ical tunneling and diffusion of topological charge. Using the diffusion model we find that at fine
enough lattice spacings, the autocorrelation times of topological observables grow like 1/a* on
open lattices but grow much faster, perhaps like 1/a®, on periodic lattices. The diffusion model
identifies two characteristic timescales of QCD simulations, the tunneling timescale Ty, and the
diffusion timescale 7giir. The improved scaling behavior of open boundary conditions sets in when
the lattice spacing is fine enough that T4 << Trunn- The lattice spacing at which this occurs depends
on the lattice action and the Euclidean time extent. For further details about the work reported here
we refer the reader to [1].
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