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In this work, we present the GPU implementation of the overrelaxation and steepest descent
method with Fourier acceleration methods for Laudau and Coulomb gauge fixing using CUDA
for SU(N) with N>2. A multi-GPU implementation of the overrelaxation method is also pre-
sented using MPI and CUDA. The GPU performance was measured on BlueWaters and compared
against the gauge fixing of the CPU MILC code.
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1. Introduction

On the lattice, the Coulomb/Landau gauge is defined by maximising the functional

FU [g] =
1

4NcV
∑
x

∑
µ

Re
[
Tr

(
g(x)Uµ(x)g†(x+ µ̂)

)]
(1.1)

with Nc the dimension of the gauge group and V the lattice volume. On the gauge fixing process,
the quality of the gauge fixing is measured by

θ =
1

NcV
∑
x

Tr
[
∆(x)∆†(x)

]
(1.2)

where
∆(x) = ∑

ν

[Uν(x−aν̂)−Uν(x)−h.c.− trace] (1.3)

is the lattice version of ∂µAµ = 0, where µ = 0,1,2,3 for landau gauge and µ = 0,1,2 for the
Coulomb gauge (where the temporal direction is along µ = 3). Two well known methods to fix the
gauge are the relaxation algorithm via overrelaxation and the steepest descent method with FFTs.

The relaxation algorithm aims to optimize the value of FU [g] locally, i.e., searching the maxi-
mum of

f g(x) = Re Tr [g(x)K(x)] (1.4)

for all x, where
K(x) = ∑

µ

(
Uµ(x)g†(x+ µ̂)+U†

µ(x− µ̂)g†(x− µ̂)
)

(1.5)

The local solution is then given by

g(x) = K†(x)
(
detK†(x)

)−1/2
(1.6)

in the case of the gauge group SU(2). For N > 2 one iteratively operates in the (N(N − 1)/2)
SU(2) subgroups. The overrelaxation algorithm, [1], replaces the gauge transformation g(x) by
gω(x) with ω ∈ [1,2[ in each step of the iteration. The gauge fixing with overrelaxation algorithm
is described in algorithm 1.

The naive steepest descent method chooses at each step of the iterative procedure

g(x) = exp
[

α

2

(
∑
ν

∆−ν

[
Uν(x)−U†

ν (x)
]
− trace

)]
(1.7)

However, when it is applied to larger lattices, this method faces the problem of critical slowing
down. This problem can be attenuated by Fourier acceleration[2]. At each iteration one chooses

g(x) = exp
[

F̂−1 α

2
p2

maxa2

p2a2 F̂
(

∑
ν

∆−ν

[
Uν(x)−U†

ν (x)
]
− trace

)]
(1.8)

with
∆−ν

(
Uµ(x)

)
=Uµ(x−aν̂)−Uµ(x) (1.9)

p2 are the eigenvalues of
(
−∂ 2

)
, a is the lattice spacing and F̂ represents a fast Fourier transform

(FFT). For the parameter α , the optimal value is 0.08. For numerical purposes, it is enough to
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expand to first order the exponential, followed by a reunitarization. The gauge fixing algorithm
using the steepest descent method with FFTs is described in algorithm 2.

Algorithm 1 Overrelaxation algorithm.
calculate Fg[U ] and θ (optional)

2: while θ ≥ ε do
for site parity = even, odd do

4: for all x with same parity do
for all SU(2) subgroups do

6: local optimization, find g(x) ∈
SU(2)
which is function of Uµ(x) and
Uµ(x− µ̂)

8: for all µ do
apply g(x) to Uµ(x) and
Uµ(x− µ̂)

10: end for
end for

12: end for
end for

14: calculate Fg[U ] and θ

end while

Algorithm 2 Steepest descent method with
FFTs.

calculate ∆(x), Fg[U ] and θ

2: while θ ≥ ε do
for all elements of ∆(x) matrix do

4: apply FFT forward
apply p2

max/p2

6: apply FFT backward
normalize

8: end for
for all x do

10: obtain g(x) from ∆(x) and reunitarize
end for

12: for all x do
for all µ do

14: Uµ(x)→ g(x)Uµ(x)g†(x+ µ̂)

end for
16: end for

calculate ∆(x), Fg[U ] and θ

18: end while

2. Implementation

The gauge links are stored in a 1-dimensional array with size volume×4×Elems in the GPU
global memory, with Elems = 4,6,9 complex elements in the case of SU(3) and volume = nx∗ny∗
nz∗nt. The memory access is done as
id = (i+ j×nx+ k×nx×ny+ t×nx×ny×nz)/2+ site_parity× volume/2+µ× volume
where the even and odd sites are kept separate and each SU(N) complex element is stored with
stride 4× volume.

In overrelaxation method, each gauge link, Uµ(x), to be updated are dependent on the neigh-
bors at Uµ(x) and Uµ(x− µ̂), i.e., in total eight gauge links must be loaded from memory. There-
fore, assigning one thread per lattice site leads to a high memory traffic and local memory usage.
A solution to avoid this is using eight threads per single lattice site, [3]. Since the GPU warp size
is 32, the minimum block size should be 32× 8 threads in order to maintain the memory reads
coalesced from global memory and the grid size must be volume/32. The gauge links are loaded
into registers whenever possible and the data exchange between threads is done through shared
memory. The ∑µ can be done using only shared memory (more shared memory consumption) or
using CUDA Atomic functions in shared memory, although double precision atomic additions are
not yet supported natively). The multi-GPU implementation was done using MPI. The code was
implemented in order to support any type of lattice partition however all local lattice dimensions
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must be an even number. At each gauge fixing step, the updates are first done in even lattice sites
and then in the odd sites. Each node needs to exchange the top links with the same direction as the
partitioned dimension and also since the exchanged links are updated we need to exchange them
back. To overlap the gauge link updates with node communication, we update first the bottom and
top links in the partitioned dimensions and then overlap the exchange top links (current parity) and
the ghost links (opposite parity) with the update of the remaining gauge links. In order to support
any kind of lattice partition, we pre-calculate the border and the interior lattice sites separately.

The steepest descent method with FFTs implemented here is a generalization of the imple-
mentation described in [4]. Here, we generalized the previous implementation to support even/odd
lattice array and SU(N) with N>2. Due to the high number of FFTs per gauge fixing step, N×N×
(4D FFT+4D IFFT)) (in SU(3), using the 12 real number parametrization, instead of 9, we can
reduce this to 6) and due to a lack of support for 4D FFTs in GPUs, we haven’t done a multi-GPU
implementation. However, one solution to avoid using FFTs is to use a multigrid implementation
of the Fourier acceleration method [5].

(a) Single GPU performance. (b) Multi-GPU performance, 324 lattice volume.

Figure 1: SU(3) performance of the Overrelaxation algorithm. AtomicAdd means using CUDA
atomicAdd function, SP/DP means single/double precision, Tex means using Texture memory,
12/18 parameters are the number of SU(3) real parameters used to store the gauge array in memory.

3. Results

The performance tests were done in BlueWaters system with MILC, [6], and CUDA 5.5. Each
node in BlueWaters system has one Tesla K20X GPU, with ECC code enabled by default. In this
paper, we only present the performance results for the SU(3) case. Despite the code for SU(3)
supports global memory storage with 18 (full SU(3) matrix), 12 and 8 real parameters, here we
only present the performance results for the full matrix and 12 real number parameterization. We
measured the performance for 1000 iterations with link reunitarization at each 20 steps. The over-
relaxation boost parameter was set at 1.5 and in stepeest descent method with FFTs α = 0.08.
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The MILC code by default splits the lattice between nodes by the following order X → Y →
Z → T , where X is the lattice fastest index. Therefore, we changed the MILC code to allow the
layout lattice partition by the following priority order T → Z → Y → X which is preferable for
GPUs.

The performance results for the Landau gauge fixing using the overrelaxation algorithm are
presented in figures 1 and 2 for single and multi-GPU. The use of CUDA atomic operations, in
single precision allow a speedup of 1.1− 1.4×, although for double precision not using CUDA
atomics we obtain a speedup of 2− 2.4×, figure 2. The double precision atomic additions is not
yet supported natively by the hardware. In figure 3, we compare the single GPU performance with
the CPU MILC code, with and without taking in account the copies from and to the GPU and the
gauge field reorder. Without taking into account the copies to and from GPU, the GPU performance
is around 350/200 times faster than CPU MILC code in single/double precision.

(a) Single precision. (b) Double precision.

Figure 2: SU(3) weak Scaling for overrelaxation algorithm. Fixed node local lattice volume to
324. Lattice volume: 323×Nt with Nt = 32× (Number of nodes). SP/DP means single/double
precision, Tex means using Texture memory.

In figure 2 we present the performance results for the weak scaling of the overrelaxation algo-
rithm for a fixed local lattice volume of 324 The results show a good performance scaling.

In figure 4 the performance results for the Coulomb gauge fixing with overrelaxation in sin-
gle GPU are presented. Although we are expecting similar or better performance results for the
Coulomb gauge fixing in comparison with the Landau gauge fixing, we obtained better perfor-
mance for Landau gauge fixing in single precision. A detailed analysis of this behavior was not
done yet.

The multi-GPU performance of gauge fixing with overrelaxation, figures 1b and 4b, shows
a good performance scaling up to four nodes for a lattice volume of 324. For eight nodes, the
performance shows a visible decrease due to the weak overlap in MPI communications and interior
gauge links update. With eight nodes, MILC splits the lattice by half in Y , Z and T dimensions.

The performance results for the steepest descent algorithm for Landau and Coulomb gauge
fixing are presented in figure 5. Further tests have to be done in order to better understand the
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Figure 3: Single GPU speed up over CPU MILC code in single node for the Landau gauge fix-
ing with overrelaxation. Using only CUDA atomic operations in single precision. SP/DP means
single/double precision, Tex means using Texture memory.

(a) Single GPU performance. (b) Multi-GPU performance, 324 lattice volume.

Figure 4: SU(3) performance results for Coulomb gauge fixing with overrelaxation. Using only
CUDA atomic operations in single precision. SP/DP means single/double precision, Tex means
using Texture memory.

performance fluctuations in changing the volume. These fluctuations are not visible when using
the gauge fixing with overrelaxation, see figures 1a and 4a.

4. Conclusion

The SU(N) code, with N>2, for Coulomb and Landau gauge fixing was implemented on
CUDA. The SU(3) code also supports 8 and 12 real number parametrization to store the gauge
array in GPU memory. Only the gauge fixing with overrelaxation method supports multi-GPUs
using MPI. In general, the steepest descent algorithm with Fourier acceleration converges faster
than overrelaxation algorithm. However, this method requires 1.5× more memory than the overre-
laxation. This library is currently being ported to QUDA library, [7].
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(a) Landau gauge fixing. (b) Coulomb gauge fixing.

Figure 5: SU(3) performance results for gauge fixing with steepest descent algorithm with Fourier
acceleration in single GPU. SP/DP means single/double precision, Tex means using Texture mem-
ory.

Acknowledgments

This work is supported by the NSF award PHY-1212270. This research is part of the Blue Wa-
ters sustained-petascale computing project, which is supported by the National Science Foundation
(awards OCI-0725070 and ACI-1238993) and the state of Illinois. Blue Waters is a joint effort of
the University of Illinois at Urbana-Champaign and its National Center for Supercomputing Appli-
cations. This work is also part of the Lattice QCD on Blue Waters PRAC allocation supported by
the National Science Foundation award ACI 0832315.

References

[1] J. E. Mandula, M. Ogilvie, Efficient gauge fixing via overrelaxation, Phys.Lett. B248 (1990) 156–158.

[2] C. Davies, G. Batrouni, G. Katz, A. S. Kronfeld, G. Lepage, et al., Fourier acceleration in lattice
gauge theories. I. Landau gauge fixing, Phys.Rev. D37 (1988) 1581.

[3] M. Schröck, H. Vogt, Coulomb, Landau and Maximally Abelian Gauge Fixing in Lattice QCD with
Multi-GPUs, Comput.Phys.Commun. 184 (2013) 1907–1919.

[4] N. Cardoso, P. J. Silva, P. Bicudo, O. Oliveira, Landau Gauge Fixing on GPUs,
Comput.Phys.Commun. 184 (2013) 124–129.

[5] A. Cucchieri, T. Mendes, A Multigrid implementation of the Fourier acceleration method for Landau
gauge fixing, Phys.Rev. D57 (1998) 3822–3826.

[6] MIMD Lattice Computation (MILC)
http://www.physics.indiana.edu/~sg/milc.html.

[7] Quda: A library for qcd on gpus, http://lattice.github.io/quda/.

7


