
P
o
S
(
L
A
T
T
I
C
E
2
0
1
4
)
0
3
6

Lattice QCD code Bridge++ on multi-thread and
many core accelerators

S. Ueda∗a, S. Aokib, T. Aoyamac, K. Kanayad , H. Matsufurue f , S. Motokie,
Y. Namekawag, H. Nemurag, Y. Taniguchid and N. Ukitag

a Theory Center, IPNS, High Energy Accelerator Research Organization (KEK),
Tsukuba 305-0810, Japan

bYukawa Institute for Theoretical Physics, Kyoto University,
Kyoto 606-8502, Japan

cKobayashi-Maskawa Institute for the Origin of Particles and the Universe (KMI), Nagoya
University,
Nagoya 464-8602, Japan

dGraduate School of Pure and Applied Sciences, University of Tsukuba,
Tsukuba 305-8571, Japan

eComputing Research Center, High Energy Accelerator Research Organization (KEK),
Tsukuba 305-0801, Japan

f Graduate University for Advanced Studies (Sokendai), Tsukuba 305-0801, Japan
gCenter for Computational Sciences, University of Tsukuba,
Tsukuba 305-8577, Japan
E-mail: sueda@post.kek.jp

We are developing an object oriented code set “Bridge++” for simulation of lattice gauge the-
ories. It aims to be an extensible, readable, and portable workbench while keeping sufficiently
high performance in actual productive runs. This paper describes the status of two extensions.
One is multi-threading with OpenMP in the recently released version 1.2. The other is a design
to use arithmetic accelerator devices such as GPGPUs, which is still under developing version.
Feasibility test is performed with OpenCL.

The 32nd International Symposium on Lattice Field Theory,
23-28 June, 2014
Columbia University New York, NY

∗Speaker.

c© Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike Licence. http://pos.sissa.it/

mailto:sueda@post.kek.jp

P
o
S
(
L
A
T
T
I
C
E
2
0
1
4
)
0
3
6

Lattice QCD code Bridge++ on multi-thread and many core accelerators S. Ueda

1. Introduction

Lattice simulations are extensively applied not only to precision studies of QCD with con-
trolled systematic errors, but also to nonperturbative analyses of models beyond the standard model.
This is largely owing to rapid increase of computer power. On the other hand, algorithms and pro-
gramming techniques have become more and more involved to fully make use of powerful architec-
ture of massively parallel clusters and arithmetic accelerators. To catch-up the rapid development
of the research frontier, it is desired to prepare a general code-set applicable in a wide range of
lattice simulations keeping high performance, based on a uniform design policy.

We have been developing a general-purpose code set named Bridge++ since 2009 [1] which
has the followings features:

• Readability: the code structure is transparent so as to be understandable even for beginners.

• Extensibility: the code is easy to be modified for testing new ideas.

• Portability: the code runs not only on laptop PC but also on supercomputers.

• High-performance: the code has a high performance enough for productive researches.

The code is written in C++ so as to adopt virtues of the object-oriented programming. The first pub-
lic version was released in July 2012. It was parallelized by MPI for cluster systems with distributed
memory while multi-threading was not supported yet. For recent massively parallel clusters, hy-
brid parallelization for multinode and multicore is mandatory to achieve a high performance. In the
version 1.2 released in September 2014, we started to support the hybrid parallelization employ-
ing OpenMP. As for the arithmetic accelerators such as GPGPUs and coprocessors, we have been
developing a system to use them and testing feasibility of OpenCL [2].

This paper is a status report of these issues. Section 2 describes our approach to the multi-
thread parallelization. In Section 3, we explain our implementation to control the arithmetic accel-
erators using OpenCL. Section 4 is devoted to summary.

2. Multi-thread

Recent parallel cluster systems consist of computing nodes, each of which possesses several
processor cores that share the memory on the node. For the internode parallelization, MPI (Message
Passing Interface) is commonly used, while some systems may provide dedicated communication
libraries that are more efficient. In Bridge++, the internode communication is implemented in the
Communicator class that wraps MPI or machine-specific API (application programming interface).
On the other hand, the intranode parallelization on the SMP (symmetric multiprocessor) systems
via multi-threading had not been incorporated into Bridge++ until recently.

For multi-threading in Bridge++, two candidates are considered: OpenMP (Open Multi-Processing)
and Pthreads (POSIX threads). OpenMP is a directive-based language extension with run-time en-
vironment: a user specifies which parts of the code should be parallelized by inserting directives,
and a compiler generates a multi-threaded program automatically. Several API functions and en-
vironment variables are provided to control run-time behavior. On the other hand, Pthreads is an
API-based library for which all the thread operations are managed through functional interfaces.

2

P
o
S
(
L
A
T
T
I
C
E
2
0
1
4
)
0
3
6

Lattice QCD code Bridge++ on multi-thread and many core accelerators S. Ueda

While Pthreads enables detailed control of the thread, programming becomes involved. For this
reason, we decided to adopt OpenMP for multi-threading in Bridge++.

2.1 Object oriented programming and OpenMP

Bridge++ employs object oriented programming, in which programs are constructed based
on objects that contain data members and methods to handle them. The objects are, in general,
constructed and destructed arbitrarily in the program. OpenMP adopts a fork-join model in which
threads are created at the beginning of the parallel region and destructed at the end. A minimal
modification to incorporate OpenMP in this framework is to confine parallel region within the
classes. However, if the creation and destruction of threads occur frequently, their overheads may
become severe. In this regard, it would be better to let the parallel region wider. Another issue
concerns object management. If an object is created inside the parallel region, it is thread-private
and not shared by other threads. This is a problem for objects that represent fields, since the
operations of them are to be parallelized by threads. We decide to create objects that are to be
shared by the threads prior to starting the parallel region. The functions that may be called inside
the parallel region are modified so as to be thread-safe.

The above prescription is applied to our code in version 1.2. As the first step, multi-threading
is implemented in the Wilson and clover fermion operators and all solver algorithms. The parallel
region encloses a call of the solver algorithm.

2.2 OpenMP and MPI

For the hybrid parallelization with OpenMP and MPI, subtlety lies in which thread executes
the communication. The following four threading support levels are prepared in MPI.

• MPI_THREAD_SINGLE: Only one thread will execute.

• MPI_THREAD_FUNNELED: The process may be multi-threaded, but only the main thread
can make MPI calls.

• MPI_THREAD_SERIALIZED: The process may be multi-threaded, and any thread can
make MPI calls though they cannot execute MPI at the same time.

• MPI_THREAD_MULTIPLE: Multiple threads may call MPI without limitation.

The available support level depends on the system and implementation of MPI. In Bridge++,
MPI_THREAD_FUNNELED is assumed to be supported, because it is the minimal requirement
for the multi-thread support in MPI.

When a system provides a dedicated communication library that is more efficient than MPI,
we adopt the library as an alternative implementation of the Communicator class and multi-thread
supports, which users may choose to use. We applied this to an IBM Blue Gene/Q (BG/Q) system,
for which low-latency communication library BGNET is available.

2.3 Present performance with OpenMP

We test the performance of Bridge++ ver.1.2 on an IBM BG/Q system with application of
BGNET-OpenMP hybrid parallelization. The performance is measured for multiplication of Wil-
son and clover fermion operator with lexical and even-odd site ordering on 163 × 32 lattice. We

3

P
o
S
(
L
A
T
T
I
C
E
2
0
1
4
)
0
3
6

Lattice QCD code Bridge++ on multi-thread and many core accelerators S. Ueda

Bridge++ code w/ BG/Q Wilson library
operator 4 threads 8 threads 4 threads 8 threads
Wilson(lex) [GFlops (%)] 335.5 (5.1) 329.9 (5.0) 885.4 (13.5) 920.0 (14.0)
Wilson(e-o) [GFlops (%)] 187.9 (2.9) 229.4 (3.5) 882.6 (13.5) 897.9 (13.7)
Clover(lex) [GFlops (%)] 398.2 (6.1) 386.9 (5.9) 585.5 (8.9) 571.3 (8.7)
Clover(e-o) [GFlops (%)] 189.5 (2.9) 195.4 (3.0) 517.7 (7.9) 470.3 (7.2)

Table 1: Performance of multiplication of Wilson and clover fermion operators with lexical (‘lex’) and
even-odd (‘e-o’) site ordering on a 32-node job class of IBM Blue Gene/Q. The performance is compared
for the cases with and without BG/Q Wilson library. The number of BGNET ranks times number of threads
per node is set to be 64.

use a 32-node class of BG/Q at KEK whose peak performance is 204.8 GFlops/node. On BG/Q,
at most 64 threads per node is available. We fixed the total number of threads per node to be 64
and varied the number of threads per BGNET rank. The result is summarized in Table 11. The
table displays the result of two cases, 4 threads and 8 threads. The sustained speeds do not depend
on the number of threads, suggesting a weak scaling of MPI and OpenMP. For comparison, results
with an optimized code of the Wilson fermion operator called BG/Q Wilson library [4] are also
presented. While multi-threading successfully works, the Bridge++ code still has a large room to
be tuned.

3. Arithmetic accelerators

Arithmetic accelerators, such as GPGPUs and Xeon Phi coprocessor, are rapidly increasing
their performance. They enable to acquire a large numerical power with less cost and electric
power, and already are widely used in lattice simulations. There are indeed open source libraries
such as QUDA [5] for NVIDIA GPUs. There are several programming frameworks including
CUDA SDK for NVIDIA’s GPUs. As a general framework, candidates are OpenACC [6] and
OpenCL [7]. The former is a directive-based language extension, like OpenMP, and the latter is
API based, like Pthreads. As the first implementation to make use of the accelerators, we adopt
OpenCL to control general accelerator devices in various environments.

3.1 OpenCL

OpenCL (Open Computing Language) is an open standard framework for a parallel program-
ming in heterogeneous platforms, such as CPUs, GPUs, FPGAs, and other processors. The spec-
ifications are maintained by Khronos Group with contributions by AMD, NVIDIA, and so on.
The left panel of Figure 1 shows an image of OpenCL framework. OpenCL works on an abstract
hardware layer (orange part) and controls accelerator hardwares (blue part) through it. Thus appli-
cations can be developed independently of specific architecture. This matches our design policy
with respect to portability.

1In Ref [3], we reported higher performance data, caused by incorrect system Flops counter.

4

P
o
S
(
L
A
T
T
I
C
E
2
0
1
4
)
0
3
6

Lattice QCD code Bridge++ on multi-thread and many core accelerators S. Ueda

OpenCL kernels

Applicaion

OpenCL runtime

Device Driver

Acceleraror hardware

OpenCL API

OpenCL framework

OpenCL C language

Cell/B.E.FPGACPUGPU Others

Bridge++ base code set

Communicator(MPI)

Fermion Operators Solver Others.

Thread Manager (OpenMP,etc)

Device Manager: Accelerator Management Class

Memory managemet:

alloc. / del., address map(CPU-GPU)

Device resources control:

device program objects, etc

accelerator device API

 (OpenCL, CUDA, QUDA)
Host(CPU) device API

accelerator device

(GPU,Xeon Phi

 Cell/B.E. FPGA etc.)

Host(CPU) device

Base architecture

Figure 1: Working image of OpenCL framework (left panel) and schematic structure of Bridge++ to handle
an accelerator (right).

3.2 Implementation in Bridge++

An application work flow by using accelerator devices is summarized as follows.

1. Allocate buffer objects at device memory.

2. Transfer data from host to device.

3. Execute kernel code on device.

4. Transfer data from device to host.

5. Delete unnecessary buffer object from device memory

Prior to these steps, some preparation for using devices is necessary such as creating contexts and
compiling kernel codes. Each step of this work flow is handled through OpenCL APIs. Usually,
steps 2 and 4 become bottlenecks, because of a narrow bandwidth between host and device. To
avoid explicit appearance of these OpenCL APIs in individual classes, we develop a device manager
class. It encapsulates the OpenCL APIs, so as to simplify the procedures and to accommodate
device differences easily. The right panel of Figure 1 schematically expresses the adopted design.
This device manager class manages memory objects on the devices and data transfer between the
host processor and the devices (orange part of the right panel in Fig. 1).

As another abstraction, we implement a class that controls field data on the device. This class
contains functions to transfer data between the host and device and to perform linear algebraic
operations using device codes. At the construction of an object of this class, an associated memory
space on the device is allocated through the device manager. Using the objects of this class, for
example, solver algorithms can be written without referring to the device specific APIs. It also
manages conversion of data layout of fields between host code and device code. It may be crucial
for optimization to choose appropriate data layout, as explained below.

5

P
o
S
(
L
A
T
T
I
C
E
2
0
1
4
)
0
3
6

Lattice QCD code Bridge++ on multi-thread and many core accelerators S. Ueda

3.3 Present performance on arithmetic accelerators

On the accelerator device such as GPGPUs, we have to use memory bandwidth efficiently by
applying so-called coalesced memory access. This requires changing the data layout suitable for
devices that may be different from host code. As explained previously, the conversion of data lay-
out is implemented in the class for the device fields. In addition, several techniques to reduce data
transfer between device memory and processing elements are adopted, such as reconstructing the
third column of SU(3) matrix from the other columns on-the-fly. (Note that the sustained perfor-
mance demonstrated below does not include the floating-point operations for the reconstruction.)

In Table 2, we summarize the present performance of our code on NVIDIA and AMD GPU.
The performance is measured for multiplication of Wilson operator (represented as “mult” in the
table) and CG solver on 163 × 32 lattice using a single accelerator device. The double precision
sustained performance values for both devices are 12% for mult, and 4-6% for solver. Although
the peak performance in the single precision is higher than that in the double precision by a factor
of four, the sustained speed is only doubled. It suggests the memory bandwidth is a bottleneck.
Further tuning of the code and architecture dependent optimization are underway.

Accelerator Specifications:
Device name Radeon HD 7970 Tesla K40
Vendor AMD NVIDIA
Architecture Southern Islands Kepler
Core clock[MHz] 925 745
Peak SP performance[GFlops] 3789 4290
Peak DP performance[GFlops] 947 1430
Global memory size[Gbytes] 3 12
Peak memory B/W [Gbyte/s] 254 288
Results for mult:
Single precision [GFlops (%)] 222.2 (5.9) 360.8 (8.2)
Double precision [GFlops (%)] 113.2 (12.0) 188.5 (12.9)
Results for solver:
Single precision [GFlops (%)] 54.52 (1.4) 163.8 (3.7)
Double precision [GFlops (%)] 39.28 (4.1) 87.0 (5.9)

Table 2: Accelerator specifications and results of performance measurement for multiplication of Wilson
operator and CG solver.

4. Summary

Two major extensions in Bridge++ are presented, that are supports for multi-threading in re-
lease version 1.2 and arithmetic accelerators in develop version. OpenMP is adopted for multi-
threading, which requires simpler coding than Pthreads. Hybrid parallelization by BGNET and
OpenMP is tested on IBM BG/Q. The weak scaling of mult is confirmed. Arithmetic accelerators
are covered in Bridge++ by use of OpenCL. We create a device manager class to conceal OpenCL
API, and control data layout and transfer between host and device. Sustained speeds on accelerator

6

P
o
S
(
L
A
T
T
I
C
E
2
0
1
4
)
0
3
6

Lattice QCD code Bridge++ on multi-thread and many core accelerators S. Ueda

devices of AMD and NVIDIA are measured. We achieve 12% for mult, and 4-6% for CG solver
in the double precision, suffering a bottleneck of the memory bandwidth. Additional optimizations
are in progress.

Acknowledgment

We thank J. Doi of IBM Japan for useful discussion on the multi-threading and T. Doi on
simultaneous use of MPI and BGNET on Blue Gene/Q system. The code was developed and tested
on Hitachi SR16000 and IBM System Blue Gene/Q at KEK under a support of its Large-scale
Simulation Program (No.13/14-19), Hitachi SR16000 at YITP in Kyoto University, K-computer
at RIKEN Advanced Institute for Computational Science, HA-PACS at University of Tsukuba
under a support for its Interdisciplinary Computational Science Program, and FX10 at University
of Tokyo. This work was supported in part by MEXT SPIRE and JICFuS. This work was supported
by Grants-in-Aid for Scientific Research Grant Numbers 24540250, 25400284.

References

[1] Bridge++ website, http://bridge.kek.jp/Lattice-code/.

[2] S. Motoki et al., Procedia Computer Science 29, 1701-1710 (2014).

[3] S. Ueda et al., PoS LATTICE 2013, 412 (2014);

[4] http://sourceforge.net/projects/bgqwilson/.

[5] M. A. Clark, R. Babich, K. Barros, R. C. Brower and C. Rebbi, Comput. Phys. Commun. 181, 1517
(2010) [arXiv:0911.3191 [hep-lat]].

[6] OpenACC website, http://www.openacc-standard.org/

[7] Khronos Group. OpenCL - The open standard for parallel programming of heterogeneous
systems.[Online]. http://www.khronos.org/opencl

7

