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Christopher Pinke, Alessandro Sciarra1. Lattice QCD at Finite Temperature

Lattice QCD (LQCD) successfully describes many aspects of the strong interactions and is the

only method available to study QCD from first principles. The idea is to discretize space-time on

a N3
σ ×Nτ hypercube with lattice spacing a and treat this system with numerical methods. State-

of-the-art lattice simulations require high-performance computing and constitute one of the most

compute intensive problems in science. The discretization procedure is not unique and several

different lattice theories of QCD have been developed. It is important, in general, to cross check

each result using different formulations.

The QCD phase diagram is of great interest both theoretically and experimentally, e.g. at

the dedicated programs at RHIC at Brookhaven, LHC at CERN or at the future FAIR facility

in Darmstadt1. On the lattice, studies at finite temperature T are possible via the identification

T = (a(β )Nτ)
−1. Thus, scans in T require simulations at multiple values of the lattice coupling

β . In addition, to employ a scaling analysis, simulations on various spatial volumes N3
σ are needed

(to avoid finite size effects one typically uses Nσ/Nτ ≈ 3). Hence, studies at finite T naturally

constitute a parallel simulation setup. Currently, these investigations are restricted to zero chemical

potential µ , as the sign-problem prevents direct simulations at µ > 0. To circumvent this issue

one can use reweighting, a Taylor series approach or one can employ a purely imaginary chemical

potential µI .

On the lattice, observables are evaluated by means of importance sampling methods by gener-

ating ensembles of gauge configurations {Um} using as probability measure the Boltzmann-weight

p[U,φ ] = exp{−Seff[U,φ ]}. Expectation values are then

〈K〉 ≈
1

N
∑
m

K[Um] .

These ensembles are commonly generated using the Hybrid-Monte-Carlo (HMC) algorithm [1],

which does not depend on any particular lattice formulation of QCD.

The fermions enter in the effective action Seff via the fermion determinant detD, which is

evaluated using pseudo-fermions φ , requiring the inverse of the fermion matrix, D−1. The fermion

matrix D is specific to the chosen discretization. The most expensive ingredient to current LQCD

simulations is the inversion of the fermion-matrix

Dφ = ψ ⇒ φ = D−1 ψ ,

which is carried out with Krylov subspace methods, e.g. conjugate gradient (CG). During the

inversion, the matrix-vector product Dφ has to be carried out multiple times. The performance of

this operation, like almost all LQCD operations, is limited by the memory bandwidth. For example,

in the Wilson formulation, the derivative part of D, the so-called 6D, requires to read and write 2880

Bytes per lattice site in each call, while it performs only 1632 FLOPs per site, giving a rather

low numerical density ρ (FLOPs per Byte) of ∼ 0.57. In the standard staggered formulation, the

situation is even more bandwidth-dominated. To apply the discretization of the Dirac operator on

a fermionic field (DKS φ ) 570 FLOPs per each lattice site are performed and 1584 Bytes are read

1See http://www.bnl.gov/rhic/, http://home.web.cern.ch/, and http://www.fair-center.de .
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or written, with a consequent smaller ρ of ∼ 0.35. This emphasizes that LQCD requires hardware

with a high memory-bandwidth to run effectively, and that a meaningful measure for the efficiency

is the achieved bandwidth. In addition, LQCD functions are local, i.e. they depend on a number of

nearest neighbours only. Hence, they are very well suited for parallelization.

2. OpenCL and Graphic Cards

CHIP
PEAK SP PEAK DP PEAK BW

{GFLOPS} {GFLOPS} {GB/s}

AMD Radeon HD 5870 Cypress 2720 544 154

AMD Radeon HD 7970 Tahiti 3789 947 264

AMD FirePro S10000 Tahiti 2×3410 2×850 2×240

NVIDIA GeForce GTX 680 Kepler 3090 258 192

NVIDIA Tesla K40 Kepler 4290 1430 288

AMD Opteron 6172 Magny-Cours 202 101 43

Intel Xeon E5-2690 Sandy Bridge EP 371 186 51

Table 1: Theoretical peak performance of current GPUs and CPUs. SP and DP denote

single and double precision, respectively. BW denotes bandwidth.

LOEWE -CSC SANAM

GPU nodes 600 40 304

GPUs/node 1 × AMD 5870 2 × AMD S10000 2 × AMD S10000

CPUs/node 2 × Opteron 6172 2 × Intel Xeon E5-2630 v2 2 × Xeon E5-2650

Table 2: AMD based clusters where CL2QCD was used for production runs.

Graphics Processing Units (GPUs) surpass CPUs in peak performance as well as in memory

bandwidth (see Table 1) and can be used for general purposes. Hence, many clusters are today

accelerated by GPUs, for example LOEWE -CSC in Frankfurt [2] or SANAM [3] (see Table 2).

GPUs constitute an inherently parallel architecture. As LQCD applications are always memory-

bandwidth limited (see above) they can benefit from GPUs tremendously. Accordingly, in recent

years the usage of GPUs in LQCD simulations has increased. These efforts mainly rely on CUDA

as computing language, applicable to NVIDIA hardware only2. A hardware independent approach

to GPU applications is given by the Open Computing Language (OpenCL)3, which is an open

standard to perform calculations on heterogeneous computing platforms. This means that GPUs

and CPUs can be used together within the same framework, taking advantage of their synergy and

resulting in a high portability of the software. First attempts to do this in LQCD have been reported

in [4].

An OpenCL application consists of a host program coordinating the execution of the actual

functions, called kernels, on computing devices (Figure 1), like for instance GPUs or a CPUs.

2See https://developer.nvidia.com/cuda-zone and https://github.com/lattice/quda for the

QUDA library.
3See https://www.khronos.org/opencl .
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Figure 1: OpenCL concept

Although the hardware has different characteristics, GPU

programming shares many similarities with parallel program-

ming of CPUs. A computing device consists of multiple com-

pute units. When a kernel is executed on a computing device,

actually a huge number of kernel instances is launched. They

are mapped onto work-groups consisting of work-items. The

work-items are guaranteed to be executed concurrently only

on the processing elements of the compute unit (and share

processor resources on the device).

Compared to the main memory of traditional computing systems, on-board memory capacities

of GPUs are low, though increasing more and more4. This constitutes a clear boundary for simula-

tion setups. Also, communication between host system and GPU is slow, limiting workarounds in

case the available GPU memory is exceeded. Nevertheless, as finite T studies are usually carried

out on moderate lattice sizes (in particular Nσ ≫ Nτ), this is less problematic for the use cases

CL2QCD was developed for.

3. CL2QCD Features

CL2QCD is a Lattice QCD application based on OpenCL, applicable to CPUs and GPUs.

Focusing on Wilson fermions, it constitutes the first such application for this discretization type [5].

In particular, the so-called Twisted Mass Wilson fermions [6, 7], which ensure O(a) improvement

at maximal twist, are implemented. Recently, the (standard) formulation of staggered fermions

has been added. Improved gauge actions and standard inversion and integration algorithms are

available, as well as ILDG-compatible IO5 and the RANLUX Pseudo-Random Number Generator

(PRNG) [8]. More precisely, CL2QCD provides the following executables.

• HMC: Generation of gauge field configurations for N f = 2 Twisted Mass Wilson type or

pure Wilson type fermions using the HMC algorithm [1].

• RHMC: Generation of gauge field configurations for N f staggered type fermions using the

Rational HMC algorithm [9].

• SU3HEATBATH: Generation of gauge field configurations for SU(3) Pure Gauge Theory

using the heatbath algorithm [10–12].

• INVERTER: Measurements of fermionic observables on given gauge field configurations.

• GAUGEOBSERVABLES: Measurements of gauge observables on given gauge field con-

figurations.

4For instance, the GPUs given in Table 2 have on-board memory capacities of 1 GB and 2×6 GB, respectively, on

LOEWE -CSC and 2×3 GB on SANAM.
5Via LIME, see http://usqcd.jlab.org/usqcd-docs/c-lime .
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4. CL2QCD Code Structure

The host program of CL2QCD is set up in C++, which allows for independent program parts using

C++ functionalities and also naturally provides extension capabilities. Cross-platform compilation

is provided using the CMAKE framework.6

The code structure of CL2QCD is displayed in Figure 2. It is separated in two main compo-

nents: the physics package, representing high-level functionality, and the hardware package,

representing low-level functionality. In addition, the meta package collects what is needed to

control the program execution and IO operations.

All parts of the simulation code are carried out using OpenCL kernels in double precision.

The OpenCL language is based on C99. In particular, concrete implementations of basic LQCD

functionality like matrix-matrix multiplication, but also more complex operations like the 6D or the

(R)HMC force calculation, are found in the kernel files. Their compilation and execution is handled

within the hardware package. The kernels are in a certain way detached from the host part as

the latter can continue independently of the status of the kernel execution. This nicely shows the

separation into the administrative part (host) and the performance-critical calculations (kernels).
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Figure 2: CL2QCD code structure. Packages and substructures are realized as namespaces. The names of

the various components are, for the sake of simplicity, not always identical to those in the code.

The physics package provides representations of the physical objects like gauge fields or

fermion fields. In addition, the corresponding classes provide functionality to operate on the re-

spective field type. Moreover, algebraic operations like saxpy are provided. Similarly, the vari-

ous fermion matrices are provided. This allows for the implementation of high-level functionality

without knowing details of the underlying OpenCL structure. For example, the (R)HMC or the cal-

culation of observables are completely independent of system or kernel specifics. In other words,

the physics package works as an interface between algorithmic logic and the actual OpenCL

implementation.

In turn, the hardware package is destined to handle the compilation and execution of the

OpenCL kernels. The hardware::System class represents the architecture available at run-

6See http://www.cmake.org .
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time. The latter can provide multiple computing devices (i.e. CPUs and/or GPUs), which are

represented by hardware::Device objects and initialized based on runtime parameters. Ker-

nels are organized topic-wise within the hardware::codenamespace; for example the different

fermionic fields are found in the hardware::code::Fermions classes. These classes take

over the calling logic of the kernels and provide meta informations like the number of FLOPs a

specific kernels performs. The hardware::Device class has each of the hardware::code

classes as singleton objects, i.e. they are initialized the first time they are needed. During this

process, the OpenCL kernels are compiled.

Memory management is performed by the hardware::buffersclasses, which also ensure

that memory objects are treated in a Structure of arrays (SOA) fashion on GPUs, which there is

crucial for optimal memory access as opposed to Array of structures (AOS).

OpenCL kernels are compiled at runtime using the OpenCL compiler class. In OpenCL,

this is mandatory as the specific architecture is not known a priori. On the one hand, this introduces

an overhead, but on the other hand allows to pass runtime parameters (like the lattice size) as

compile time parameters to the kernels, saving arguments and enabling compiler optimization for

specific parameter sets. In addition, the compiled kernel code is saved for later reuse, e.g. when

resuming an HMC chain with the same parameters on the same architecture. This reduces the

initialization time. Kernel code is common to GPUs and CPUs, device specifics are incorporated

using macros.

5. Unit Tests, Maintainability and Portability

In general, it is desireable to be able to test every single part of code on its own and to have

as little code duplication as possible. This is at the heart of the Test Driven Development [13]

and Clean Code [14] concepts, which we follow during the development of CL2QCD and which is

visible in the code structure (see Figure 2). Unit tests are implemented utilizing the BOOST7 and

CMAKE unit test frameworks.

During the development of CL2QCD, it was found that regression tests for the OpenCL parts

are absolutely mandatory due to the runtime compilation. The latter implies that both the archi-

tecture and the used compiler can lead to miscompilations of the kernels. Having trustable tests

at hand allows to recognize such situations quickly and simplifies error location drastically. Most

important, this can prevent the user from wasting computing time.

In particular, as LQCD functions are local in the sense that they depend only on a few nearest

neighbours, one can calculate analytic results to test against. Often, the dependence on the lattice

size is easily predictable. Varying the lattice size in the tests, or in general the parameters of the

considered function, is important as errors may occur in certain parameter ranges only.

Another crucial aspects to guarantee maintainability and portability of code is to avoid depen-

dence of the tests on specific environments. For example, this happens when random numbers are

used (e.g. for trial field configuration). If this is the case, a test result then depends not only on the

used PRNG but also on the hardware in a multi-core architecture.

7See http://www.boost.org .
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6. Performance of 6D

Our Wilson 6D implementation, which is crucial for overall performance, shows very good per-

formance on various lattice sizes (Figure 3) and outperforms performances reported in the literature

(see [5]). We are able to utilize ∼ 80% of the peak memory bandwidth on the AMD Radeon HD

5870, Radeon HD 7970 and FirePro S10000. Note that the code runs also on NVIDIA devices as

shown in the figure, however, with lower performance since AMD was the primary development

platform and no optimization was carried out here.
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Figure 3: Performace of Wilson 6D kernel for various lattice sizes on different devices in double precision.

The staggered DKS implementation, which plays the same role as 6D regarding the overall speed

of the code, shows also good performance on various lattice sizes (Figure 4). In this case we are

able to utilize ∼ 70% of the peak memory bandwidth on the AMD Radeon HD 5870 and AMD

Radeon HD 7970. Due to its recent development, the implementation of the staggered code can be

further optimized. So far no other benchmark for a possible comparison is present in the literature.

Again, the code runs also on NVIDIA devices as shown in the figure. The performance is though

also here lower for the same reasons explained above regarding the Wilson 6D.
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Figure 4: Performace of DKS kernel for various lattice sizes on different devices in double precision.
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7. Algorithmic Performance

The full HMC application also performs very well compared to a reference CPU-based code

tmLQCD [15] (see Figure 5). The tmLQCD performance was taken on one LOEWE -CSC node.

Compared to tmLQCD, the older AMD Radeon HD 5870 is twice as fast. The newer AMD FirePro

S10000 again doubles this performance. This essentially means that we gain a factor of 4 in speed,

comparing a single GPU to a whole LOEWE -CSC node. In addition, it is interesting to look at the

price-per-flop, which is much lower for the GPUs used then for the used CPUs.

0 1000 2000 3000 4000 5000 6000 7000

A

B

C

6459

6469

2178

3458

3410
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AMD Radeon HD 5870
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Figure 5: HMC performance for different Setups A, B and C (setup A having the smallest fermion mass)

for Nτ = 8,Nσ = 24. The HMC is compared on different GPUs and compared to a reference

code [15] running on one LOEWE -CSC node.

As on-board memory is the biggest limiting factor on GPUs, using multiple GPUs is of great

interest [16]. In CL2QCD it is possible to split the lattice in time direction [17].

8. Conclusions and Perspectives

We presented the OpenCL-based LQCD application CL2QCD. It has been successfully ap-

plied in finite temperature studies on LOEWE -CSC and SANAM supercomputers (see Table 2),

providing a well-suited basis for future applications. CL2QCD is available at

http://code.compeng.uni-frankfurt.de/projects/clhmc

In N f = 2 Lattice QCD studies we explore the phase diagram of QCD, in particular aiming at

the chiral limit, where the order of the chiral transition is not resolved yet. Results obtained here

can be used to constrain the physical phase diagram of QCD. The chiral limit is investigated in two

independent approaches. On the one hand, in studies employing Twisted Mass Wilson fermions

[18–20], we aim directly at the chiral limit at zero chemical potential. On the other hand, one

can approach this issue by studying the phase structure of QCD at purely imaginary values of the

chemical potential µ , which we do with Wilson and staggered fermions [21, 22].

Additional features will be added to CL2QCD according to the needs of the physical studies.

In the near future, these will cover the extension of Wilson fermions to N f = 2+ 1 flavours and

the implementation of the clover discretization. Adding to that, optimizations of performances of

staggered fermions and the inclusion of improved staggered actions are planned.
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