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1. Introduction

We wish to find the correlation function between a source and a sink nuclear wave function,
of the form

〈N1(t)| ¯N2(0)〉 (1.1)

where ¯Nh and Nh are nuclear creation and annihilation operators built from quark and gluon fields
described by quantum numbers h. As described in [1], ¯Nh can be written as

¯Nh = ∑
{a}

w
a1...anq
h q̄(a1)q̄(a2) . . . q̄(anq) (1.2)

where wh is an antisymmetric tensor that is nonzero only when none of the indices are equal and
the combination of the quarks is appropriate for the nuclear quantum number.

The correlation function requires a sum over pairs of terms in the source and sink wavefunc-
tions, and each pair requires a sum over orderings of quark creation and annihilation operators in
each term. It can be expressed in terms of quark propagators S(q(a0),q(a1); t) as:

〈N1(t)| ¯N2(0)〉=
1
Z

∫
dUe−SQCD ∑

i∈src
∑

j∈snk
wiw j ∑

α,β

S(q̄(ai
α1),q(a j

β1)) . . .S(q̄(ai
αnq),q(a j

βnq))εα
ε

β

(1.3)
where α and β are permutations of 1 . . .nq, and am

n is the mth creation or annihilation operator in
the nth term of the wavefunction.

For a given source term i and sink term j, the sum over α and β is equivalent to taking the
determinant of a matrix G(i j) where [1]

G(i j)
mn = S(q̄(am

i ),q(a
n
j)) (1.4)

Therefore, the expression for the correlator can be restated as:

〈N1(t)| ¯N2(0)〉=
1
Z

∫
dUe−SQCD ∑

i∈src
∑

j∈snk
wiw j det(G(i j)) (1.5)

Here, computing the nuclear correlation function requires computing a determinant for every pair of
terms in the sink and source wave functions, which typically grow rapidly in size with increasing
atomic number A. Note that G is block-diagonal because the correlation function between two
quarks of different flavors is always zero, so we compute det(G) as the product of the determinants
of smaller single-flavor matrices.

2. Determinant Updates

Typically, det(G) is calculated by taking the trace of the LU decomposition of the matrix,
which takes O(n3) time in the number of quarks [2]. However, this can be improved by taking into
account similarities between pairs of matrices.

If two source wavefunctions or two sink wavefunctions differ by only one term, the corre-
sponding G matrices will differ by only a single row or column. If source terms i and j differ only
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in the rth element, the matrices G(ik) and G( jk), which denote, respectively, the correlator between
the ith or jth source term and the kth sink term, can be expressed as:

G( jk) = G(ik)+uvT (2.1)

where v is the difference between the rows of G( jk) and G(ik), and u is an element vector that
determines which row has changed.

2.1 Matrix Determinant Lemma

An update of this form can be computed in O(n2) time, using the identity [3]

det(G+uvT ) = (1+ vT G−1u)det(G). (2.2)

To prove this, we first see that:

det(I +uvT ) = (1+ vT u) (2.3)

because of the equality (
1 0
vT 1

)(
1+uvT u

0 1

)(
1 0
−vT 1

)
=

(
I u
0 1+ vT u

)
(2.4)

This implies

det(G+uvT ) = det(G)det(I +G−1uvT ) = det(G)det(I + vT G−1u) (2.5)

G−1u is easily computed using the LU factorization, since the systems Ux = b and Ly = x can
be solved in a total of n2−n multiply-adds and 2n divides.

Somewhat surprisingly, it is possible to calculate some rank-1 updates in O(n) time. If a parent
matrix G(ik) has the nth row changed in one way to get G( jk) and in a different way to get G(lk), the
determinant of G( jk) is

det(G(ik)+uvT
1 ) = (1+ vT

1 G(ik)−1
u)det(G(ik)), (2.6)

and the determinant of Glk will be

det(G(ik)+uvT
2 ) = (1+ vT

2 G(ik)−1
u)det(G(ik)). (2.7)

The most computationally intensive calculation is finding G(ik)−1
u, but this is shared between the

two determinants. So the determinant of G(lk) can be computed with only a single vector multiply.

3. Execution Order

To be able to use the fast determinant method, we must find a set S of matrices such that the
every matrix G differs from some matrix in S by at most one row or column. Then, after evaluating
det(G1) where G1 ∈ S, which takes O(n3) time, all the matrices that differ from G1 by a row or
column can have their determinants calculated in O(n2) or O(n) time.
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Figure 1: A comparison of algorithms shows that the fast calculation is approximately four times
as fast as LAPACK. “Updating” uses the O(n2) update algorithm where it can, and “caching”
additionally saves the solution of G−1u to compute a portion of the determinants in O(n) time.

Consider a graph in which each matrix is a vertex and an edge exists between vertices if they
differ by a single row or column. The subset S is represented by a dominating set of this graph.
Ideally, we would use the minimal dominating set, as this would require the fewest uses of the
O(n3) algorithm.

However, finding the minimal dominating set of a graph is known to be NP-complete. Luckily,
a simple greedy algorithm, where the vertex with the highest degree is chosen and removed from
the graph, along with its neighbors, provides a good approximation [4].

Furthermore, simply generating the graph is difficult, as O(N4) matrix comparisons are needed.
For this reason, only the dominating set of the source wavefunction is considered. This has com-
plexity of only O(N2), which takes no more than a few minutes given a wave function with order
104 terms. The graph and dominating set remain the same over different gauge configurations, so
the time spent in this phase can be amortized over many correlator calculations.

In practice, the vertices in the graph tend to have high degree, so a large fraction of the matrices
can have their determinants calculated in linear or quadratic time.

4. Results

This method was tested using five sample alpha particle wave functions. One had all 12 quarks
on the same site with one term; two consisted of a triton and a proton, with 1944 terms each; and
two had two particles on each site, with 5718 terms each. All combinations of wavefunctions at
the sink and source were considered, so when both the sink and source had 5718 terms, a total of
57182 = 32,695,524 determinants were calculated per site.

The wave function with one term had a dominating set of size one; the 1944 term wave func-
tions had dominating sets of size 167, 183, 241, and 245; and the 5718 term wave functions had
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dominating sets of sizes 509, 568, 699, and 703. Thus, between 80 and 90 percent of the determi-
nants could be calculated more quickly than with the naïve method.

First, the LU factorization function in LAPACK was replaced with a custom method that did
not use pivoting, a technique that enhances numerical stability for poorly conditioned matrices.
LAPACK is optimized for larger matrices; for the small (6× 6) matrices used here, LAPACK
has considerable overhead. The optimizations discussed above were applied using this custom
factorization function.

Overall, the determinant updating technique was between four and five times faster than LA-
PACK when tested on combinations of the wave functions above, as can be seen in Figure 1.

5. Conclusion & Further Improvements

Improving two portions of the algorithm would have significant impacts on efficiency.
The first is the quality of the dominating set approximation, which determines how many

determinants must be computed in cubic time. A simple greedy algorithm works reasonably well,
but it may be worthwhile to spend more time in this phase to get a better result. Second, reducing
overhead in the algorithm and in the caching mechanism becomes increasingly important as the
asymptotic complexity of the determinant calculation decreases.

Larger nuclei would benefit more from this approach, since the difference between the O(n3)

approach and the faster methods would be more significant. For sufficiently large nuclei, utilizing
rank-2 and higher updates might be effective as well.

Additionally, this method can be parallelized up to the size of the dominating set, as the graph
can be partitioned into sets which each contain one member of the dominating set and its neighbors.
Each of these partitions can be considered separately.

Utilizing the similarities between wavefunction terms can provide significant speedups in the
calculation of correlators. The matrix determinant lemma provides an asymptotic speedup from
O(n3) to O(n2) for many of the terms, and careful caching provides a further speedup to O(n).
This asymptotic speedup is reflected in real-world correlator calculations.
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