
P
o
S
(
L
A
T
T
I
C
E
2
0
1
4
)
0
5
0

pyQCD: A Native Lattice Simulation Package for
Python

Matthew Spraggs∗

University of Southampton
E-mail: ms10g12@soton.ac.uk

I demonstrate pyQCD, a native Python library providing an extensible API for single-node lattice
measurements and simulations. Boost.Python is used to wrap the underlying C++ code and ex-
pose an interface to Python for the generation of propagators and configurations, both of which
are returned as numpy ndarray types. The library also takes advantage of GPU technology by
using CUDA where possible to accelerate Dirac operator inversions. I hope that the package
will provide a set of tools for rapid prototyping and testing of lattice measurements prior to their
implementation in production code.

The 32nd International Symposium on Lattice Field Theory,
23-28 June, 2014
Columbia University New York, NY

∗Speaker.

c© Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike Licence. http://pos.sissa.it/

mailto:ms10g12@soton.ac.uk

P
o
S
(
L
A
T
T
I
C
E
2
0
1
4
)
0
5
0

pyQCD Matthew Spraggs

1. Introduction

Work in lattice field theory has produced a range of software packages used by various collab-
orations over the years. Due either to poor documentation or complex APIs, these bring significant
challenges to those who wish to learn how lattice simulations work or experiment with new algo-
rithms and measurements. The goal of this project (pyQCD) is to provide a Python package to
satisfy these needs, whilst producing performance comparable with modern production-level code.

2. Design

2.1 Interface

I chose Python [1] as the package interface on the basis that it provides simplicity whilst
requiring minimal boilerplate code. Python is an interpretted, dynamically-typed, high-level, multi-
paradigm language with a focus on producing simple, expressive code. As a result of this, it is easy
to learn and understand. Being an interpretted language, it is easier to debug in most cases than
compiled langauges. In addition, its popularity has given rise to a large number of packages and
libraries for a broad range of applications.

The major drawback of Python in the context of scientific computing is performance. The
dynamically-typed nature of the language results in significant overheads, as the validity of op-
erations must be checked at runtime. To overcome this issue, the underlying simulation code for
pyQCD is written in C++ and ported to Python using Boost.Python [2], an interface to the complex
Python C API. Whilst there remains some overhead when calling functions from Python, if these
function calls are infrequent they will not impact significantly on the overall performance of the
package.

Listing 1: Example code

import pyQCD

Create the Lattice object

lattice = pyQCD.Lattice(L=4, T=8,

beta=5.5, action="wilson",

meas_spacing=10,

update_method="heatbath")

Generate some configurations

for i in range(20):
print(lattice.get_av_plaquette())
lattice.update()

Compute a propagator

inverter = partial(lattice.invert_wilson_dirac, mass=0.2)

source = lattice.point_source([0, 0, 0, 0])

prop = pyQCD.compute_propagator(source, inverter)

Compute a pseudoscalar correlator

ps_correlator = pyQCD.compute_meson_corr(prop, prop, "g5", "g5")

print(ps_correlator)

2

P
o
S
(
L
A
T
T
I
C
E
2
0
1
4
)
0
5
0

pyQCD Matthew Spraggs

The code adopts an object-orientated approach to lattice simulations, with the lattice gauge
field encapsulated in a Lattice object. One can the call functions on this object to update the
state of the lattice or apply actions to other objects (see Listing 1). Function output is also fully-
integrated with the numpy array data type, so that these packages can be utilised, for instance when
computing Dirac operator eigenvalues.

2.2 Internals

The package currently runs on a single node only. This design choice has been made to reduce
the complexity of the package and avoid the complications of integrating MPI in C++ with the
Python front-end. I deem this design choice reasonable at this stage, since the package is not
targetting production-level calculations.

Internally, the lattice sites are arranged lexicographically, with the z-coordinate being the most
rapidly varying and the t-coordinate being the least rapidly varying. This incurs the cost of poor
cache performance, as hopping sites in the time-direction will likely run over cache boundaries. I
recognise this to be an area where significant performance improvements could be made in future.

The Lattice class exposed to Python can be mapped directly to a corresponding class in the
C++ code. This class handles allocation of the gauge links, along the implementation of the update
algorithms and gauge actions. Fermionic actions are implemented in a object-oriented, modular
fashion, with an arbitrary hopping matrix allowing derivative terms with arbitrary spin structure to
be included in calculations with relative ease.

Extensive use is also made of the Eigen 3 linear algebra library [3]. This library is extensively
optimised, with explicit vectorisation throughout. In addition, the interface is clean and simple,
which will enhance the readability of the pyQCD code. I also use OpenMP [4] to parallelise
certain operations.

It is also possible to compile the library to utilise any Nvidia GPUs present via the CUDA
GPU framework [5]. This allows for Dirac operator inversions to be accelerated by parallelising
the matrix-vector operations required in this process.

3. Further Work

There is much scope for further work on this package. The code needs to be fully profiled and
optimised, particularly in the area of cache performance. Work is currently underway to produce
an underlying lattice template that implements cache blocking to reduce cache misses. Part of this
work also involves generalising the code to an arbitrary number of colours and dimensions. In
addition, C++11 brings many useful features to the language that could be used to improve the
code considerably.

Besides improving the existing code, it would be also be very useful to implement additional
gauge and fermionic actions to increase the range of problems to which the package can be applied.

Work on this package is ongoing and I welcome contributions from others at the package
repository, found at https://www.github.com/mspraggs/pyQCD.

3

https://www.github.com/mspraggs/pyQCD

P
o
S
(
L
A
T
T
I
C
E
2
0
1
4
)
0
5
0

pyQCD Matthew Spraggs

References

[1] Python. https://www.python.org. Accessed: 31-10-2014.

[2] Boost.python. http://www.boost.org/doc/libs/1_56_0/libs/python/doc/.
Accessed: 31-10-2014.

[3] Gaël Guennebaud, Benoît Jacob, et al. Eigen v3. http://eigen.tuxfamily.org, 2010.

[4] OpenMP Architecture Review Board. OpenMP application program interface version 3.0, May 2008.

[5] John Nickolls, Ian Buck, Michael Garland, and Kevin Skadron. Scalable parallel programming with
cuda. Queue, 6(2):40–53, 2008.

4

