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without phase transitions. It is dominated by the Brout-Englert-Higgs mechanism in some do-

main of the phase diagram, while it is essentially QCD-like in another. It is expected that albeit

there is no qualitative difference, there are substantially quantitative differences throughout the

spectrum. This is investigated using lattice theory for the case of the scalar singlet channel for

more than a hundred different points in the phase diagram. It is found that the results deviate

partly substantially from the expectations in some cases, but in others justify the picture of a

weakly interacting theory - even in cases of rather strong interactions at the ultraviolet cutoff.
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1. Introduction

Yang-Mills-Higgs theory, i. e. an SU(2) Yang-Mills theory coupled to a complex doublet of

scalar particles, is both conceptually and phenomenologically relevant. The phenomenological

relevance comes about since it is just the Higgs sector, though with degenerate W and Z bosons be-

cause of the absence of QED, of the standard model. Though without the fermions it is substantially

weaker interacting [1], many qualitative statements should hold true1.

In particular, it should be possible to cross-check, whether the expectation about this theory,

especially as motivated by perturbation theory [2], should hold true. These are that the theory shows

two distinct behaviors, though they are necessarily not separated by a phase transition [3, 4]. In

the one domain, at strong gauge coupling, the theory should exhibit a QCD-like behavior. This has

been confirmed, e. g., by the observation of a non-vanishing intermediate-distance string tension

[5], just like in QCD. As a consequence, the spectrum should show Regge trajectories, and other

features known from QCD, which are not (directly) related to chiral symmetry.

On the other hand, there should be a region at weak gauge coupling where a Brout-Englert-

Higgs (BEH) effect operates. Naively, this region may be either at weak or at strong Higgs-self-

coupling. In the latter case, the Higgs becomes heavy, much heavier than the gauge bosons. In the

perturbative domain, the mass of the Higgs should be, essentially, free to choose. Here, to leading

order, it does not matter whether continuum or lattice perturbation theory is used. These results

depend essentially on the classical action, i. e. the action at tree-level, and hence at the cutoff. But

the usual argument is that in the weak interaction domain this should remain true, even if there are

quantum corrections to the parameters.

Of course, this is not the full truth, as also in the BEH domain the observables must be gauge-

invariant states [6], i. e. bound states from the point of view of field theory. That perturbation

theory still adequately describes experiments is due to the Fröhlich-Morchio-Strocchi (FMS) effect

[6, 7], confirmed in lattice calculations [1, 8]. The FMS mechanism shows that, in suitable gauges, a

description in terms of either the physical degrees of freedom or the elementary degrees of freedom

will yield the same results, up to corrections of order of the Higgs fluctuations, being very small

in the standard model. Essentially, there are bound states dual to the elementary particles, having

the same mass to leading order. This justifies perturbation theory. But then, the logical possibility

exists that there may be internal excitations, which could in principle be observable, as well as

bound states in other quantum number channels [8].

Indications that the so sketched picture may not be entirely correct have already been found

long ago [9, 10]: It was not possible to push the W boson mass - or, more appropriately said, the

one of its dual gauge-invariant bound state - above the mass in the corresponding scalar channel

while maintaining the BEH effect. To understand this behavior, and also to investigate whether

other parts of the naive picture may not be entirely correct, we study here the physical spectrum in

a large part of the phase diagram. In total, we have investigated about 115 different points, using

the methods described in [1, 11].

1We assume here than the possible triviality of the theory is a sufficiently small effect below the cutoff, here simu-

lated by the lattice cutoff a−1 introduced by the lattice spacing a, to not affect our results.
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Figure 1: The left panel shows the phase diagram of the Yang-Mills-Higgs theory as a function of bare gauge

coupling, Higgs 4-point coupling, and the bare Higgs mass in units of the 0+ singlet mass. Green points are

QCD-like, and purple points are BEH-like. The lighter the points, the smaller is the lattice spacing. The

right-hand plot shows the same in terms of the lattice bare parameters of inverse gauge coupling, hopping

parameter, and four-Higgs coupling, see [1] for their relation to the continuum parameters.

2. Phase diagram

The first interesting question is, whether the observation in [9, 10] is correct, and under which

conditions the physics is QCD-like or BEH-like. Of course, since there is no phase transition

between the two regions, this not a well-posed question. But since the presence or absence of the

BEH-effect is anyhow dependent on the chosen gauge [12], the question in itself is dependent on

the choice of gauge. We will therefore use the volume-dependence of the relative alignment of the

Higgs field 〈(∑φ)2〉 [12] in non-aligned minimal Landau gauge [13] as an indication of the BEH

effect. In addition, we monitor the effective mass of the W boson at long times. The BEH effect

requires this to be an (almost) ordinary mass, while in the QCD-like domain, it is not well-defined

[1, 14]. One could argue that the intermediate-distance string tension would be also a helpful

quantity. However, if the distance over which an almost linear rise appears shrinks and shrinks, it

will at some point not longer be distinguishable from the remaining effects, even if there still is a

remnant.

To compare these quantities to the observable spectrum, we calculated the level spectrum in

the dual channels to the Higgs, being the 0+ custodial singlet, and the W , being the 1− custodial

triplet [7], essential with the methods described in [1]. However, in addition, we used an enlarged

operator basis and preconditioning, as will be described elsewhere [11]. This basis included up to

10 operators in the 0+ channel and 8 in the 1− channel, depending on the statistical fluctuations. In

both cases two-particle scattering states, in the 1− channel even three-particle states, where part of

the basis. In this section, only the ground-state masses are relevant, and have been obtained after

the variational analysis with two-cosh fits. All the masses were obtained on 244 lattices. Again,

details will be presented elsewhere [11].

The results are shown in figure 1. The points in the phase diagram have been classified us-

ing the various quantities listed above. Using the lattice couplings, the BEH phase persists at all
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gauge couplings, for sufficiently large hopping parameter and not too large Higgs self-coupling.

Translated into the continuum, the BEH phase is driven like a wedge into the QCD-like region,

up to rather large gauge couplings, significantly above 1. However, in contrast to the perturbative

situation [2], the QCD-like domain persists even at substantially bare negative mass-squared for

the Higgs. In addition, the Higgs self-coupling must also be small enough for the BEH effect to

become operational, and otherwise the theory is driven into the QCD-like domain.

3. Levels in the singlet scalar channel

To better understand the results from the phase diagram, it is useful to investigate the lowest

levels in the 0+ channel. These are shown in figure 2. Plotted are the three lowest energy levels,

wherever they were possible to identify, and still somewhat reasonably small compared to the

lattice spacing. They are plotted against the ratio of the ground-state masses in the 0+ singlet to

the 1− triplet channel. At sufficiently large mass of this ground-state, however, the 0+ singlet can

decay into two triplets. Fixing the mass of the 1− triplet to 80 GeV, this would be at 160 GeV. It

then makes no longer sense to normalize the results such, as the lowest level becomes a scattering

state, and all values would coincide at 0.5. To avoid this cluttering up, the points are spread evenly

according to their lattice spacing, determined from the fixed 1− triplet channel, the finest lattice

closest to zero.

Shown as a function are the three lowest energy levels in the 0+ singlet channel. They are

normalized to the expected lowest three trivial states. Since it appears that always either the 0+

singlet or 1− triplet channel are the lowest channel [11], these trivial states are determined in the

following way:

• The lowest state is normalized to twice the mass of the 1− triplet ground state. Hence, it

should become one, if the mass of the 0+ crosses the decay threshold. Below the decay

threshold, this will depend on the mass of the 1− triplet, but must be a strictly decreasing

function given the x-axis.

• The normalization of the next two states depends upon whether the decay threshold is crossed

for the ground state. The second state is normalized to twice the lighter of either the 0+

singlet ground-state mass or the 1− triplet ground-state mass, as long as the ground-state

in the 0+ singlet channel did not yet cross the decay-threshold, as then it could be the first

trivial level. If it has crossed, then it is normalized to the first state with the minimum kinetic

energy in an s-wave, i. e.

mtrivial = 2

√

m2
1−3

+

(

2π

N

)2

(3.1)

• Correspondingly, the second state is normalized to the value (3.1) below the decay threshold,

and to the trivial state with two units of momenta above the decay threshold.

This normalization ensures that if all states should be trivial, then all curves would always be one,

within statistical and systematical errors.
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Figure 2: The three lowest energy levels in the 0+ singlet channel, as a function of the ratio of the ground state mass in this channel and the ground state mass

in the 1− triplet channel. The word ’Spread’ indicates that the ratio does not make any sense anymore once the 0+ singlet becomes unstable to the decay into the

1− triplet channel, and above this threshold the points would all coalesce at the value 0.5, but are spread according to their lattice spacing, the smallest lattice

spacing to the lowest values. The y axis is the mass of the 0+ state divided by the trivial mass, as discussed in the text. The dashed vertical line delineate a

125±10 GeV band, corresponding to the physical Higgs mass. Not in all cases three levels could be reliably identified. Furthermore, points with an average

energy greater than π/2 have been omitted.
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The results show a different picture, however. There is indeed a substantial range in which

there is a non-trivial ground state, as expected from the previous section. This state is stable inside

this theory, and conforms to the picture of a Higgs. After crossing the decay threshold, it indeed

becomes trivial, being just a scattering state.

The situation is somewhat different for the higher levels, though their uncertainties are sub-

stantially larger. The first surprise is that in the QCD-like region all results cluster essentially

around one, in both cases. This implies that there appears to be no additional states below the

decay threshold of two 0+ singlet ground state particles in an s-wave in the 0+ singlet channel.

That is quite surprising, since in a strongly interacting theory, especially one which should be able

to sustain Regge trajectories, the naive expectation is that there should be a number of states with

level spacings similar as in QCD. Hence, there should be several states far below one. This is not

observed, though the uncertainties, as stated are large - shown are only one-σ statistical errors.

This will require a substantially better investigation.

In the range where the 0+ singlet has one to two times the 1− triplet mass, i. e. in the physical

range of a light Higgs, the second state is compatible with a trivial state. The third state comes

up somewhat higher, but this would then rather require to find the second trivial state rather than

to overinterpret it as non-trivial state. The result is nonetheless interesting. Such a situation is

expected at weak coupling, and indeed seen in lattice calculations at substantially weaker bare

couplings than the ones investigated here [15]. Here, however, both the four-Higgs coupling and

the gauge coupling are comparatively strong at the ultraviolet cutoff, as can be seen in figure 1,

and deviations could have been expected. Indeed, some are seen, but in other channels, as will

be presented elsewhere [11]. Unfortunately, this also implies that if there is something like an

internally excited Higgs, as could be speculated given the FMS mechanism [8], it will be very hard

to find.

The last interesting point is beyond the decay threshold. At (relatively) large lattice spacings

(i. e. close to, but smaller than, 1/2 in figure 2), the second level is, for all intents and purposes,

trivial, while the third state cannot be reliably extracted, as it is too heavy. From perturbation theory

it is expected that a reasonably stable Higgs above the decay threshold should exist for quite some

mass range [2]. Here, no evidence is seen for coarse lattices. On finer lattices, the second and third

state seem to come down. However, since also the volume becomes smaller, this may just be a

finite volume effect, and more refined calculations, e. g. using Lüscher’s method [16] on multiple

volumes, will be required to clarify this. If also there all states are trivial, this could lead again to a

possible contradiction to the naive assumption about the structure of the theory.

4. Conclusions

After establishing with full non-perturbative calculations support for the FMS mechanism,

and hence a rather clean field-theoretical interpretation of what is measured at the LHC and its

predecessors, understanding the implications for the Higgs sector is the next interesting challenge.

As was shown throughout, not all results confirm with the naive, mostly perturbative, expectations

about how this theory behaves for the various values of the couplings at the cutoff. Of course,

triviality and lattice artifacts may cloud the view, and hence further careful investigations will be
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required to find a full picture. But if these results are confirmed than even rather weakly-interacting

theories with an operative BEH effect hold non-perturbative surprises.

Even if is confirmed that the Higgs sector of the standard model holds no experimentally rele-

vant non-perturbative deviations from the perturbative calculations, this is not the end of the story.

Similar sectors appear throughout many beyond-the-standard-model scenarios. Given the results,

and the intricacies of the FMS mechanism, in such cases sizable deviations from the perturbative

picture can arise. An example is the 2-Higgs-doublet model, see [17], where a difference may arise

due to the mismatch of the custodial group and the gauge group. It is therefore urgently neces-

sary not only to finalize the assessment of the non-perturbative corrections to the standard model,

but also to start understanding other theories with less simpler Higgs sectors than in the standard

model.
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