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Fine lattice simulations with the Ginsparg-Wilson fermions J. Noaki

1. Overview of numerical simulation

We are aiming at performing precise lattice QCD calculations to test the heavy-flavor sector of
the Standard Model. In order to achieve a good control of systematic errors, we generate N f = 2+1
gauge configurations using the Möbius domain-wall fermion action with the kernel built after three
levels of the stout-smearing. The tree-level improved Symanzik action is employed for the gauge
sector. The formalism and the status at an earlier stage were presented in [1]. For the development
of our simulation code, see [2]. We designed the numerical simulation to have:

• multiple lattice spacings at a−1 = 2.4 GeV and finer, which allow continuum extrapolation
of heavy-quark matrix elements with discretization errors under control.

• good chiral property of the light-quark sector, which allows a precise chiral extrapolation
without introducing extra terms due to discretization effects. Good control of the operator
mixing between different chiralities is also achieved.

• large enough physical volume to suppress finite size effects. Most of the ensembles satisfy
the condition mπL >∼ 4.0.

The target lattice spacings are a−1 ≈ 2.4, 3.6 and 4.6 GeV. Besides the finest one which is in
progress, the gauge ensembles have been generated at three values of the up and down quark
masses mud corresponding to mπ ≈ 500, 400 and 300 MeV. We take two values of the strange
quark mass ms to allow interpolation to the physical mass point. At a−1 ≈ 2.4 GeV, we also have
two ensembles with mπ ≈ 240 MeV in different volumes. A comparison of these ensembles will

β a−1 [GeV] L5 size ms mud mπ [MeV] #trajs
4.17 2.4 12 323 ×64 0.030 0.0070 313 10,000 (τ = 1)

0.0120 406 10,000
0.0190 508 10,000

323 ×64 0.040 0.0035 234 10,000 (τ = 1)
0.0070 315 10,000
0.0120 407 10,000
0.0190 507 10,000

483 ×96 0.040 0.0035 230 8,700 (τ = 1)

4.35 3.6 8 483 ×96 0.018 0.0042 299 5,000 (τ = 2)
0.0080 415 5,000
0.0120 505 5,000

483 ×96 0.025 0.0042 300 5,000 (τ = 2)
0.0080 411 5,000
0.0120 508 5,000

4.47 4.6 8 643 ×128 0.015 0.0060 ≈ 300 1,425 (τ = 4)

Table 1: Gauge ensembles. The second column lists the target lattice spacing. The last column shows the
number of thermalized trajectories in unit of the molecular dynamics time τ .
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Figure 1: Overview of the simulation parameters. Left: simulation points in the (a2, mπ) plane. Two regions
(a > 0.08 fm, mπ > 300 MeV) and (a > 0.10 fm, mπ > 400 MeV) are indicated by different colors. Right:
Parameters in the (mπ , L) plane. We show the regions of mπ L >∼ 3.0, 3.5 and 4.0 by different colors. See the
text for more details.

give an estimate of the finite size effects. We note that the length of the unit trajectory is increased
from the standard choice τ = 1 to τ = 2 at a−1 ≈ 3.6 GeV and τ = 4 at 4.6 GeV in order to reduce
the effects of possible long autocorrelations at these finer lattices [3]. Table 1 lists the parameters
and the current statistics of these gauge ensembles. By using the Möbius kernel and three levels of
the stout smearing, the Ginsparg-Wilson relation is precisely satisfied with a moderate size in the
5-th direction of the lattice L5. In fact, we obtain the residual mass at a level of mres < 0.5 MeV at
β = 4.17 and even smaller values mres < 0.1 MeV at β = 4.35.

Parameters of the generated gauge configurations are summarized in the two panels of Fig-
ure 1. The left panel shows the simulation points in the (a2,mπ) plane. Using the physical scale
as discussed in the next section, we plot the pion mass at β = 4.17 (blue) and 4.35 (red) with
filled (open) symbols for the lighter (heavier) strange quark mass. The point for β = 4.47 (green)
represents a temporary estimate. Note that we are exploring much finer lattices compared to our
previous project which covers the black region in the left panel. The right panel shows the simu-
lation points in the (mπ , L) plane. All points with mπ >∼ 300 MeV satisfy the condition mπL >∼ 4.0
for a good control of finite volume effects. Two points with mπ ≈ 240 MeV at β = 4.17 are carried
out on two different physical volumes, mπL ≈ 4.5 and 3.0, for a direct check of the volume effects.

In the rest of this article we present some basic tests of the generated gauge configurations as
a preparation for physics studies. For other related works, see [4, 5].

2. Scale setting by the Yang-Mills gradient flow

We determine the physical scale by the Yang-Mills gradient-flow time t0 which is defined by
t2 ⟨E⟩ |t=t0 = 0.3 [7]. E is the energy density of the gauge field calculated using its clover-leaf
definition. Compared to the alternative way of using w0 defined by t d

dt (t
2 ⟨E⟩)|t=w2

0
= 0.3 [8], the

scale setting by t0 shows milder mass dependence and smaller statistical error as reported in [9].
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Figure 2: t0/a2 as a function of (2m2
K +m2

π)t0 for β = 4.17 (left) and 4.35 (right). In each panel, the solid
line indicates the linear fit to the data.
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Figure 3: mΩ as a function of m2
π in physical units at β = 4.17 (left) and 4.35 (right). In each panel, the

solid line indicates the linear fit to the data. The green diamonds represent the physical values obtained by
the interpolation of ms.

Chiral expansion of t0/a2 would take a form

t0/a2 = (t̄0/a2)

[
1+

k1

(4π f )2t̄0
(2m2

K +m2
π)t0 +O(M4)

]
, (2.1)

where k1, f and t̄0 (the value of t0 in the chiral limit) are unknown parameters [10]. M represents
a typical light meson energy-scale. Since there is no non-analytic contribution at the order of M2,
we carry out a linear extrapolation of t0/a2 as a function of (2m2

K +m2
π)t0, which is proportional

to the total sea quark mass 2mud +ms. For the physical point, we use mπ = 135 MeV, mK = 495
MeV and t1/2

0 = 0.1465 fm as inputs [8]. The left and the right panels of Figure 2 show this chiral
extrapolation at β = 4.17 and 4.35, respectively. At the physical point, we obtain

a−1 =

{
2.45(1) GeV (β = 4.17),
3.60(2) GeV (β = 4.35),

(2.2)

where we quote only the statistical error. Analysis including higher order terms, which are visible
as a difference between two ms, is to be performed. We observe a good agreement in t0/a2 between
the two different volumes (blue and green symbols) at (mud,ms) = (0.0035,0.0400) in the left
panel. The systematic error from the finite volume size should therefore be small.
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Figure 4: The Monte Carlo history of several quantities taken from the ensemble at β = 4.35 and (mud,ms)=

(0.0042,0.0250). Left: history of t2E at t = 6 (red) and 7 (blue). Both the gray (τ = 1) and brown (τ = 2)
regions represent the thermalizing trajectories. Right: history of the point source correlators of pion (upper)
and Ω-baryon (lower) at a time slice t = 15.

We also compute the Sommer scale r0/a on each ensemble and extrapolate the data to the
physical point as a linear function of (2m2

K +m2
π)t0. From (2.2) and the extrapolated values of r0/a,

we obtain consistent values r0 = 0.469(4) fm (β = 4.17) and 0.45(1) fm (β = 4.35), where only
the statistical errors are quoted. These estimates are reasonably consistent with r0 = 0.45–0.50 fm
obtained so far in 2+1-flavor QCD [9].

We also attempt a scale determination from the Ω-baryon mass. As mentioned in the previous
section, we have two gauge ensembles with different strange quark masses, mh

s > ml
s, at each β .

We first estimate the Ω-baryon mass mh
Ω (ml

Ω) at mh
s (ml

s) and at the physical pion mass m2
π =

(135 MeV)2 by assuming a linear fitting function in terms of m2
π . Left and right panels of Figure 3

show these plots for β = 4.17 and 4.35, respectively. Linear combination m2
ηs

= 2m2
K −m2

π is
extrapolated to the physical pion mass and resulting values, (m2

ηs
)l and (m2

ηs
)h, are used to tune the

strange quark mass. We then estimate mΩ at the physical point by

mphys
Ω = ml

Ω +
(m2

ηs
)phys − (m2

ηs
)l

(m2
ηs
)h − (m2

ηs
)l · (mh

Ω −ml
Ω). (2.3)

Our estimates mphys
Ω = 1.67(7) GeV (β = 4.17) and 1.63(6) GeV (β = 4.35) with mphys

ηs = a2[2 ·
(495 MeV)2 − (135 MeV)2] are consistent with the experimental value mΩ = 1.672 GeV.

These observations indicate that we obtain consistent estimates of the lattice scale a−1 from
t0, r0 and mΩ.

3. Thermalization and autocorrelation

As already reported in [1], we found a long thermalization time for the finer lattices at β =

4.35. It gives a warning that the thermalization and autocorrelation should be monitored and
checked for various quantities covering both gluonic and fermionic observables. Observables from

5
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Figure 5: The Monte Carlo history and the histogram of the topological charge Q at β = 4.17 (left) and and
4.35 (right). Examples with the heaviest quarks are shown for each β .
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Figure 6: Scatter plots of the pion effective mass versus Q2 for β = 4.17 (left, at t = 15) and 4.35 (right, at
t = 30). The central value over the entire data is shown with a dashed line. On several topological sectors,
central values and statistical errors are also shown. Examples from the same ensembles as Figure 4.

the Yang-Mills gradient flow are particularly useful because they are statistically very precise and
have a sensitivity to the IR fluctuations, for which the long autocorrelation is expected. The left
panel of Figure 4 shows the history of t2E at the flow time t/a2 = 6 and 7, around which t0 is
extracted. We observe that HMC undergoes thermalization during the first 4,000 MD-time. After
that, the gauge configurations do not seem to be trapped in any specific region. A quantitative
analysis of the autocorrelation time is ongoing.

In the right panel of Figure 4, we also check the autocorrelation of hadron correlators. Com-
pared to the similar plots for t2E, the autocorrelation is less significant for these hadronic observ-
ables.

4. Global topological charge and correlation with hadronic observables

Another but related concern in the ensemble generation is the nearly frozen topology at the
finer lattice spacings. We evolve the stored gauge configurations by the Yang-Mills gradient flow
and compute the topological charge Q = 1

16π2 ∑x trFµν(x)F̃µν(x). We extract a measurement of
Q after the measured value comes to a plateau in t. From the history of Q, we confirm that a
reasonable sampling of different topological sectors is obtained for each ensemble of β = 4.17 and
4.35. Figure 5 shows the examples of the MC history and the histogram from the heaviest quark
mass ensembles at each β . The figure shows a significantly narrower distribution of Q at β = 4.35
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(right two panels) than β = 4.17 (left two panels), though they share similar values of mud, ms and
the physical volume. This suggests that the global topological charge Q decorrelates more slowly
on the finer lattice. In [6], we propose a method to extract correct physical results in such situations
and present the results for the topological susceptibility.

For a precision study of hadron physics, it is desirable to check possible influences of the
global topology freezing to hadronic observables. Figure 6 shows scatter plots of the pion effective
mass meff

π versus Q2 at β = 4.17 (left) and 4.35 (right). We observe that the correlation between Q
and the distribution of meff

π is negligible. Actually, averages of meff
π in different topological sectors

are in good agreement with that over all the sectors. This observation together with an analytic
study of the effects of fixing topology [11] implies that the influences of the slow fluctuation of Q
to hadronic observables are not significant in our simulated region of the lattice spacing.

Numerical simulations are performed on the IBM System Blue Gene Solution at High Energy
Accelerator Research Organization (KEK) under a support of its Large Scale Simulation Program
(No. 13/14-04). This work is supported in part by the Grant-in-Aid of the Japanese Ministry of
Education (Nos. 21674002, 25287046, 25800147, 26400259) and the SPIRE (Strategic Program
for Innovative Research) Field5 project.
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