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1. Introduction

Monte Carlo calculations in lattice QCD are necessarily carried out in finite volume. How-
ever, most of the excited hadrons we seek to study are unstable resonances. In finite volume with
particular boundary conditions, the eigenvalues of the Hamiltonian are discrete since only certain
momenta are allowed in order to satisfy the boundary conditions. Diagonalization of the Hamil-
tonian leads to a knowledge of the discrete stationary states. In infinite volume, a continuum of
momenta are available and unstable excited hadrons decay to multi-hadron asymptotic states. In
finite volume, there are no decays; instead, there is only quantum mechanical mixing between Fock
states. Fortunately, it is possible to study the excited resonances using finite-volume calculations.

The idea that finite-volume energies can be related to infinite-volume scattering processes
is actually rather old, dating back to Refs. [1, 2] in the mid-1950s. Details on how to utilize
such relationships in lattice QCD were first spelled out in Refs. [3, 4]. These calculations were
later revisited using an entirely field theoretic approach in Ref. [5], and subsequent works have
generalized their results to treat multi-channels with different particle masses and nonzero spins.

In the work described in this talk, we use a variety of two-pion energies in finite volume with
different total momenta to calculate the P-wave scattering phase shifts in the I = 1 channel, and
extract the mass and width of the ρ resonance. Our preliminary results are obtained on a 323×256
anisotropic lattice with quark masses tuned to yield a pion mass around 240 MeV. All needed Wick
contractions are efficiently evaluated using a stochastic method[6] of treating the low-lying modes
of quark propagation that exploits Laplacian Heaviside quark-field smearing.

2. Scattering phase shifts from finite-volume energies

For a given total momentum PPP = (2π/L)ddd in a spatial L3 volume with periodic boundary
conditions, where ddd is a vector of integers, we determine the total energy E in the lab frame for
a particular two-particle interacting state in our lattice QCD simulations. If the masses of the
two particles are m1 and m2, we then boost to the center-of-mass frame and define the following
quantities:

Ecm =
√

E2−PPP2, γ =
E

Ecm
, qqq2

cm =
1
4

E2
cm−

1
2
(m2

1 +m2
2)+

(m2
1−m2

2)
2

4E2
cm

, (2.1)

u2 =
L2qqq2

cm

(2π)2 , sss =
(

1+
(m2

1−m2
2)

E2
cm

)
ddd. (2.2)

The relationship between the finite-volume two-particle energy E and the infinite-volume scattering
amplitudes (and phase shifts) is encoded in the matrix equation:

det[1+F(sss,γ,u)(S−1)] = 0, (2.3)

where S is the usual S-matrix whose elements can be written in terms of the scattering phase shifts,
and the F matrix is given in the JLS basis states by

F(sss,γ,u)
J′mJ′L′S′a′; JmJLSa =

ρa

2
δa′aδS′S

{
δJ′JδmJ′mJ δL′L +W (sss,γ,u)

L′mL′ ; LmL
〈J′mJ′ |L′mL′ ,SmS〉〈LmL,SmS|JmJ〉

}
,

(2.4)
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ddd Λ cotδ1

(0,0,0) T+
1u Re w0,0

(0,0,1) A+
1 Re w0,0 +

2√
5
Re w2,0

E+ Re w0,0− 1√
5
Re w2,0

(0,1,1) A+
1 Re w0,0 +

1
2
√

5
Re w2,0−

√
6
5 Im w2,1−

√
3

10 Re w2,2,

B+
1 Re w0,0− 1√

5
Re w2,0 +

√
6
5 Re w2,2,

B+
2 Re w0,0 +

1
2
√

5
Re w2,0 +

√
6
5 Imw2,1−

√
3

10 Re w2,2

(1,1,1) A+
1 Re w0,0 +2

√
6
5 Im w2,2

E+ Re w0,0−
√

6
5 Im w2,2

Table 1: Expressions for the P-wave phase shifts δ1(Ecm) relevant for I = 1 ππ scattering for various ddd and
irreps Λ. The quantities wlm are defined in Eq. (2.11). The irrep labels are discussed in Ref. [7].

where J,J′ refer to total angular momentum, L,L′ are total orbital angular momenta, S,S′ refer to
total intrinsic spin in the above equation, a,a′ label channels, ρa = 1 for distinguishable particles
and ρa =

1
2 for identical particles, and

W (sss,γ,u)
L′mL′ ; LmL

=
2i

πγul+1 Zlm(sss,γ,u2)
∫

d2
Ω Y ∗L′mL′

(Ω)Y ∗lm(Ω)YLmL(Ω). (2.5)

Notice that F(sss,γ,u) is diagonal in channel space, but mixes different total angular momentum sec-
tors, whereas S is diagonal in angular momentum, but has off-diagonal elements in channel space.
Also, the matrix elements of F(sss,γ,u) depend on the total momentum PPP through sss, whereas the ma-
trix elements of S do not. The Rummukainen-Gottlieb-Lüscher (RGL) shifted zeta functions are
evaluated using

Zlm(sss,γ,u2) = ∑
nnn∈Z3

Ylm(zzz)
(zzz2−u2)

e−Λ(zzz2−u2)+δl0γπeΛu2
(

2uD(u
√

Λ)−Λ
−1/2

)
+

ilγ
Λl+1/2

∫ 1

0
dt
(

π

t

)l+3/2
eΛtu2

∑
nnn∈Z3
nnn 6=0

eπinnn·sssYlm(www) e−π2www2/(tΛ), (2.6)

where zzz = nnn− γ−1
[1

2 + (γ − 1)s−2nnn · sss
]
sss and www = nnn− (1− γ)s−2sss · nnnsss, the spherical harmonic

polynomials are given by Ylm(xxx) = |xxx|l Ylm(x̂xx), and D(x) is the Dawson function, defined by

D(x) = e−x2
∫ x

0
dt et2

. (2.7)

We choose Λ ≈ 1, although the final answer is independent of this choice. Choosing Λ near unity
allows sufficient convergence speed of the summations. Gauss-Legendre quadrature is used to
perform the integral, and the Dawson function is evaluated using a Rybicki approximation.

The scattering processes we study conserve both total angular momentum J and the projection
of total angular momentum, say MJ . Given orthonormal states, then the unitarity of the S-matrix
tells us that

〈J′m′J′L′S′a′| S |JmJLSa〉= δJ′JδmJ′mJ s(J)L′S′a′, LSa(E), (2.8)
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Figure 1: Energies atE of ππ states for various ddd2. Dashed lines indicate the non-interacting energies of
allowed ππ states. The shaded region indicates the inelastic thresholds. Diamond markers indicate levels
with large overlaps with the qq̄ operator corresponding to the ρ meson.

where a′,a denote other defining quantum numbers, such as channel, and s(J) is a unitary matrix
that is independent of mJ due to rotational invariance. If the two particles have zero spin s1 = s2 = 0
and there is only one channel, then

s(J) = s(L) = e2iδL(E), (2.9)

where δL(E) are known as the scattering phase shifts. The factor of 2 is conventional to agree with
a certain definition when scattering from a central potential.

For single-channel ππ scattering, s1 = s2 = 0, so S = 0 and J = L, in which case Eq. (2.4)
simplifies to

F(sss,γ,u)
L′mL′ ; LmL

=
1
2
(
δL′LδmL′mL +WL′mL′ ; LmL

)
, (2.10)

using ρa = 1 for distinguishable pions. In the case of P-wave scattering of pions, we assume δL = 0
for all L except L = 1. Hence, the matrix elements of S−1 are all zero, except for diagonal entries
with L = 1. This means the matrix F(S−1) has non-zero entries only for columns with L = 1, so
we only need to consider the 3× 3 block involving L = 1. In all cases, we can reduce the 3× 3
matrix to diagonal form and obtain expressions for cotδ1 for various ddd and irreps Λ, which are
summarized in Table 1, defining

wlm =
Zlm(sss,γ,u2)

γπ3/2ul+1 . (2.11)
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Figure 2: Single pion energies squared a2
t E2 against ddd2 for our 322× 256 lattice. Fitting to a straight line

yields the slope which equals (π/(16ξ ))2, where ξ = as/at .

3. Finite-volume ππ I = 1 energies

At rest, the ρ meson appears in the T+
1u channel, but for nonzero total momenta, we use results

in Ref. [7] to determine which little groups contain the ρ . We find that the ρ will appear in the
irreps A+

1 and E+ of C4v for on-axis total momenta, in the A+
1 , B+

1 and B+
2 irreps of C2v for planar-

diagonal momenta, and A+
1 and E+ irreps of C3v for cubic-diagonal momenta. The spectrum of

energies from each of these channels can be used to compute the I = 1 ππ P-wave scattering phase
shift, and hence, determine the mass and width of the ρ resonance.

In determining the ππ scattering phase shifts, only energy levels below the inelastic thresh-
olds can be used. In each of the above channels, we include enough two-pion operators of different
individual momenta to get a good signal for all states below such thresholds. Our operator con-
struction is described in detail in Ref. [7], and our operator selection procedure and correlator
matrix analysis is presented in Ref. [8]. Fig. 1 shows the energies obtained for the interacting ππ

levels, compared to the energies of allowed ππ states in the absence of meson-meson interactions.
These results are obtained using a 323× 256 anisotropic lattice with quark masses tuned to yield
a pion mass around 240 MeV. All needed Wick contractions were efficiently evaluated using the
stochastic LapH method[6].

3.1 P-wave scattering phase shifts

To compute the scattering phase shifts using the energies for nonzero total momenta, transfor-
mation to the center-of-mass frame is required. Since we are using an anisotropic lattice, energies
are measured in terms of the temporal spacing at , while the momenta are given in terms of the larger
spatial spacing as. This means changing frames requires a precise knowledge of the renormalized
anisotropy ξ = as/at .

We determine the anisotropy using the dispersion relation of the pion. The energy E of a free

5
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Figure 3: P-wave phase shift δ1 again center-of-mass energy atEcm. Symbol color indicates the ddd2 of
the level used, while the symbol shape indicates the irrep. Points which overlap 0◦ or 180◦ within error
are shifted by ±180 to ensure continuity of the phase shift. The dashed line indicates the best fit to a
Breit-Wigner with the gray band indicating the bootstrap errors in the fit function. These results are still
preliminary.

particle of mass m and momentum PPP = (2π/L)ddd are related by

(atE)2 = (atm)2 +
1

ξ 2

(
2πas

L

)2

ddd2. (3.1)

By evaluating the energies of a particle with different momenta, ξ can be determined. The energies
for a single pion for various momenta are shown in Fig. 2. The parameter ξ was fit using a standard
least squares fit for each bootstrap resampling.

The energies shown in Fig. 1, as well as the lowest three energies for zero momentum in the
T+

1u channel obtained in Ref. [8], were used to compute the δ1 phase shift using the expressions
given in Table 1. Calculating the phase shift requires not only the energy E of a particular state, but
also the mass of the pion mπ at rest and the renormalized anisotropy ξ to determine Ecm, and hence,
qqqcm and u. The formulas in Table 1 yield cotδ1, which means that care with respect to quadrant
must be taken when determining δ1 for measurements on different bootstraps.

Our preliminary results for the I = 1 ππ P-wave scattering phase shift are shown in Fig. 3
against the center-of-mass energy atEcm. The mass mr and width Γ of the ρ resonance is obtained
by fitting the phase shift to a Breit-Wigner form:

tan(δ1) =
Γ/2

mr−E
+A, (3.2)

6



P
o
S
(
L
A
T
T
I
C
E
2
0
1
4
)
0
7
7

P
o
S
(
L
A
T
T
I
C
E
2
0
1
4
)
0
7
7

Pion-pion scattering Brendan Fahy

where A parametrizes a slowly-varying background. The width Γ is sensitive to the allowed phase
space for its decay products, which depends on the pion mass. Since our pion mass is 240 MeV,
we cannot expect our width determination to agree with experiment. However, the effects of phase
space can be reduced by writing the width in terms of a ρππ coupling g:

Γ =
g2

48πm2
r
(m2

r −4m2
π)

3/2. (3.3)

The coupling g is expected to be fairly insensitive to the quark mass. Our best-fit values for mr and
Γ, with errors determined by bootstrap resampling, are

atmr = 0.1284±0.0010 and g = 5.04±0.48. (3.4)

The location of the resonance is consistent with the value obtained from the spectrum of states in
a finite box in the T+

1u channel presented in Ref. [8], which yielded a mass 0.1284± 0.0014. The
value of g is slightly low but consistent with its experimental value near 6. Keep in mind that these
results are not yet finalized.

4. Conclusion

Our progress in calculating the I = 1 ππ P-wave scattering phase shifts on a large 323×256
lattice for a light pion mass near 240 MeV was described in this talk. The stochastic LapH method
was used to evaluate all needed Wick contractions.
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