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We present preliminary results on K-pi scattering lengths obtained by the RBC-UKQCD collab-

oration. The results are obtained using one of our domain wall fermion ensembles with physical

quark masses. We demonstrate that the physical point analysis contains large "around-the-world"

effects and show techniques that we use to keep these effects under control. Our current estimates

for scattering lengths are mπ a0 = −0.0674(33) for I=3/2 scattering and 0.1562(50) for I=1/2,

where the errors are statistical only. These results agree with the previous lattice calculations.
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1. Introduction

Scattering phase shifts are quantities which encode the basic interaction properties of two

hadron systems. They can be calculated from first principles using lattice QCD by applying

Lüscher’s quantization condition [1]. The phase shift will depend on the centre-of-mass energy

of the system in a non-trivial way, however if we are interested in low energy scattering processes,

it is useful to parametrise it in terms of the scattering length. In this project, we investigate the scat-

tering lengths in the K-π system. There are two such processes, depending on the total isospin of

the K-π system, which can be equal to 1/2 or 3/2. Previous studies of K-π scattering lengths have

been done with heavy kaon and pion masses and relied on chiral perturbation theory to extrapolate

to the physical point [2–5]. This introduces an error due to chiral extrapolation, which is especially

large in the I=1/2 case. We present below the first calculation done directly at the physical point

using 88 configurations of 483 ×96×24 2+1 flavour Iwasaki ensembles with Möbius domain wall

fermion action. We choose the bare quark masses to be aml = 0.00078 for the light quarks and

ams = 0.0362 for strange quarks with β = 2.13, which corresponds to the inverse lattice spacing

a−1 = 1.730(4)GeV [8]. We use Z2 ×Z2 stochastic sources with periodic boundary conditions in

all spatial directions and antiperiodic in time direction. These values correspond to physical pion

and kaon masses.

2. Methodology

We follow the procedure described in [5]. From Lüscher’s quantization condition [1] we have

the following dependence of the s-wave phase shift (δ0) on the lattice kinematics:

(

tanδ0(p)

p

)−1

=
2√
πL

Z00

(

1,
L2

4π2
p2

)

, (2.1)

where the ‘scattering momentum’ p is defined by:

EKπ =
√

p2 +m2
π +

√

p2 +m2
K , (2.2)

and Z00(l;m) is defined by:

Z00(l;m)≡
√

4π ∑
n∈Z

(n2 −m)−l. (2.3)

For l = 1 the function Z00 has a UV divergent part, which can be regulated and subracted as shown

in the appendix A of [6]. The scattering length can then be extracted from eq. (2.1) using:

a0 = lim
p→0

tanδ0(p)

p
. (2.4)

To evaluate this limit, we take K and π to be at rest, which results in the smallest possible value

of p. The scattering length can then be taken to be equal to tanδ0(p)/p up to O(p2) corrections.

The problem is thus reduced to finding the accurate values of EKπ , mK and mπ as described in the

following sections. For comparison purposes, instead of calculating the scattering length itself, we

find the dimensionless quantity a0mπ .
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ūγ5s(t)

d̄γ5u(0)

s̄γ5u(2)
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Figure 1: Contractions contributing to Kπ scattering I=3/2 channel.

3. Kπ scattering - contractions

We can extract Kπ energies (and hence a0) from the following correlation function:

CI
Kπ(t)≡ 〈OI

Kπsnk(t)O
I
Kπsrc(0)〉, (3.1)

where I denotes the isospin representation of the operator. We choose to use the two-meson inter-

polating operators, described below.

3.1 I=3/2

In the I=3/2 case, it’s easiest to consider the highest weight state with I3 = 3/2. This state

consists of a single flavour eigenstate K+π+, which can be created by choosing:

O
3/2
Kπsrc(t) = T [(ūγ5s)(t)(ūγ5d)(t +δ )], (3.2)

O
3/2

Kπsnk(t) = T [(s̄γ5u)(t)(d̄γ5u)(t +δ )], (3.3)

with δ = ±2. We chose to split the meson in time to accomodate for stochastic Z2 × Z2 noise

sources that we use for the propagators. This is done to avoid the additional, non-gauge invariant

contractions that would arise if both operators were placed at the same time slice with the same

noise vector. We chose to use only one noise source per time slice to keep the number of propagator

inversions low. The contractions consist of two diagrams shown in figure 1 and are given by:

D = Tr
(

S†(t;2)L(t;2)
)

Tr
(

L(t +2;0)†L(t +2;0)
)

, (3.4)

C = Tr
(

S†(t;2)L(2;0)L†(t +2;0)L(t +2;2)
)

, (3.5)

where S(t f , ti) and L(t f , ti) denote the strange and light quark propagators starting at time ti and

ending at time t f . The correlation function is found to be equal to:

C
3/2
Kπ (t) = D−C. (3.6)

3.2 I=1/2

In the I=1/2 case, the operator is a linear combination of three I3 = 1/2 operators:

O
I=1/2
Kπsrc (t) = T [α(d̄γ5s)(ūγ5d)+β (ūγ5s)(d̄γ5d)+ γ(ūγ5s)(ūγ5u)] (3.7)
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l̄γ5l(0)

s̄γ5l(2) l̄γ5s(t)

l̄γ5l(t + 2)

R

l̄γ5l(0)

s̄γ5l(2) l̄γ5s(t)

l̄γ5l(t+ 2)

H

Figure 2: Additional contractions contributing to Kπ scattering I=1/2 channel, which we call R

(left) and H(right).

For this operator to be in I=1/2 representation, we must have α + β − γ = 0. Individually the

contractions for each of these operators with (s̄γ5d)(d̄γ5u) at the sink are:

〈[(s̄γ5d)(d̄γ5u)](t)[(d̄γ5s)(ūγ5d)](0)〉= D−R,

〈[(s̄γ5d)(d̄γ5u)](t)[(ūγ5s)(ūγ5u)](0)〉= H −C, (3.8)

〈[(s̄γ5d)(d̄γ5u)](t)[(ūγ5s)(d̄γ5d)](0)〉= H −R,

where the diagrams D and C are shown in Fig. 1 and the remaining two diagrams are in Fig. 2. The

choice of the operator at the sink is immaterial, because the operator at the source will project it to

the right isospin state. Our choice is α = 1, β = γ = 1/2, which gives an operator which creates

the I=1/2 Kπ state in the free theory and therefore eliminates all the self-contraction diagrams (H

diagram). This combination is the most likely to have a good overlap with I=1/2 Kπ state. Other

choices of α , β and γ would correspond to different mixtures of Kπ and Kη interpolating operators.

We chose the same sources as in I=3/2 case. While it may be beneficial to consider other source

types and use the the generalised eigenvalue problem to separate the ground state (Kπ) from the

first excited state (κ), previous studies by other collaborations [5] showed that two-meson sources

have good overlap with the ground state for light pion masses. The contractions can then be written

as:

R = Tr
(

S†(t,2)L(t, t +2)L†(0, t +2)L(0,2)
)

. (3.9)

and the correlation function becomes:

C
1/2
Kπ (t) = D+0.5C−1.5R. (3.10)

4. K π scattering - correlation functions

Having calculated the correlation functions, we can use them to determine the energy of the

K-π state. Taking one of the possible time orderings as an example, we have:

CI
Kπ(t) = 〈K†(t +2)π†(t)π(2)K(0)〉 (4.1)

= |〈Kπ |π(2)K(0) |0〉|2 e−EKπ (t+2) (4.2)

+ |〈0 |π(2)K(0) |Kπ〉|2 e−EKπ (T−t−2) (4.3)

+ |〈K |π(2)K(0) |π〉|2 e−mπ (T−t−2)e−mK(t+2) (4.4)

+ |〈π |π(2)K(0) |K〉|2 e−mK(T−t−2)e−mπ (t+2) (4.5)

+ . . . .

4
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Figure 3: Ratio of CKπ(t)/(CK(t)Cπ(t)) with

the best fit curve.
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Figure 4: Fits for K-to-π matrix elements

with K-pi separation of 30 and 40.

In the above equations, the operator π(2)K(0) is understood to be taken in the correct isospin

projection - either 3/2 or 1/2. For sufficiently large time extent, T , contributions from the terms

given by eqs. (4.3-4.5) will be negligible in comparison to the term given by eq. (4.2). In this case

the correlation function has a time dependence given by a single exponential. Our experience with

π-π scattering shows that the most accurate estimate of the ground state energy can be obtained by

considering the ratio of the two-pion correlation function to the single pion two-point functions [7].

In K-π scattering case, the corresponding ratio would be:

CKπ(t)

Cπ(t)CK(t)
≈ Ae−∆Et ≈ A(1−∆Et), (4.6)

where ∆E = EKπ −mK −mπ and A is a constant. The second approximation in the above equations

comes from assuming that ∆E is small. We therefore expect the ratio to be approximately linear

for some 0 ≪ t ≪ T/2. An example of such ratio plot is shown in Fig. 3. We can see that the

data points for the ratio do not match the single exponential behaviour. From this observation we

can conclude that ‘around-the-world’ effects given by equations (4.3-4.5) should be included in

the fitting procedure. This requires a five parameter fit, where the parameters are EKπ and four

normalization constants which appear in terms given by equations (4.2-4.5). Such fit turns out to

be stable, but fitting five parameters simultaneously can result in a large statistical error. This issue

can be dealt with by calculating the K-to-π and π-to-K matrix elements in equations (4.4 and 4.5)

from a different correlation function, which reduces the number of free parameters from 5 to 3.

The calculation of these matrix elements is described in the following section.

5. Reducing the number of fitting parameters using K to π matrix elements

As we mentioned in the previous section, and as shown in the results section below, we can

improve the error by calculating the K-to-π and π-to-K matrix elements in eqs. (4.4-4.5) separately.

We outline the calculation of the K-to-π matrix element below. The π-to-K matrix element can be

5
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a
3/2

0 mπ a
1/2

0 mπ

NPLQCD −0.0574(16)
(

+24
−58

)

0.1725(13)
(

+23
−156

)

Fu −0.0512(18) 0.1819(35)

PACS-CS −0.0602(31)(26) 0.183(18)(35)

this result −0.0674(33) 0.1562(50)

Table 1: Comparison of our current result with previous lattice results. Where two error bars

are given, the first corresponds to statistical error and the second to systematic error due to chiral

extrapolation.

found in the same way. We can extract K → π matrix elements from:

C(t) = 〈π(∆)π(t +2)K(t)K(0)〉 (5.1)

= 〈0 |π |π〉〈π |π(2)K(0) |K〉〈K |K |0〉e−mπ (∆−t)e−mKt (5.2)

+ 〈π |π |0〉〈0 |π(2)K(0) |Kπ〉〈Kπ |K |π〉e−mπ (T−∆)e−EKπ t (5.3)

+ . . . ,

with other contributions negligible in comparison. If there were no around-the-world effects, the

ratio C(t)/(Cπ(∆− t)CK(t)) = 〈π |π(2)K(0) |K〉/(〈0 |π |π〉〈K |K |0〉) would be constant. This

quantity is shown in Fig. 4. As before, the plot shows significant discrepancy from the above

approximation, which suggests that the around-the-world effects can not be neglected. Examples

of fits including the leading around-the-world contribution (eq. 5.3) are shown in figure 4. Fitted

values for these correlation functions for the K-π matrix element in this figure are 1.1661(78) for

K-π separation of 30 and 1.1697(34) for K-π separation of 40. We can see that, despite the apparent

qualitative differences in correlation functions themselves, they are consistent to within 1σ .

6. Results

Our final values for scattering lengths using 3 and 5-parameter fits are:

Number of parameters a
3/2

0 χ2/do f a
1/2

0 χ2/do f

5 -0.0638(73) 0.0263 0.165(10) 0.0805

3 -0.0674(33) 0.0307 0.1562(50) 0.0805

We can see that using a 3-parameter fit helps to reduce the error by about a factor of 2. A com-

parison with earlier lattice results is shown in table 1. A graphical comparison with lattice and

phenomenological results [9] is in Fig. 5.

7. Conclusions

We have performed the first calculation of K-π scattering lengths directly at physical kinemat-

ics. Our results for mπa0 are -0.0674(33) for I=3/2 scattering and 0.1562(50) for I=1/2 scattering,

where the errors are purely statistical. The biggest limitation of the above calculation is that it is

6
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Figure 5: Comparison with current experimental and lattice results.

done using only a single lattice spacing, so we expect the error to be enhanced by O(a2) effects. We

will address this issue by repeating the calculation on an ensemble with a different lattice spacing

and taking the continuum extrapolation in the near future.
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