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I derive the most general quantization condition for energy eigenvalues of two interacting baryons
in a finite cubic volume when arbitrary twisted boundary conditions are imposed on their finite-
volume wavefunctions. These quantization conditions are used, along with experimentally known
scattering parameters of two-nucleon systems in the coupled 3S1− 3D1 channels, to demonstrate
the expected effect of a selection of twisted boundary conditions on the spectrum of the deuteron.
It is shown that an order of magnitude reduction in the finite-volume corrections to the deuteron
binding energy arise in moderate volumes with a proper choice of boundary conditions on the
proton and the neutron, or by averaging the result of periodic and anti-periodic boundary condi-
tions. These observations mean that a sub-percent accuracy can be achieved in the determination
of the deuteron binding energy at (spatial) volumes as small as ∼ (9 [fm])3 in upcoming lattice
QCD calculations of this nucleus with physical light-quark masses. The results reviewed in this
talk are presented in details in Ref. [1].
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1. Introduction

With the aid of algorithmic and computational advances, lattice quantum chromodynamics
(LQCD) studies of properties of light nuclei and hyper nuclei have become reality in recent years
(albeit still with unphysical quark masses) [2, 3, 4]. These are starting to pave the road towards truly
ab initio calculations in nuclear physics which ultimately aim to reduce the systematic uncertainties
associated with several crucial nuclear observables [5]. LQCD calculations themselves suffer from
systematic uncertainties. These are however fully quantifiable, and can be reduced by an increase
in computational resources and/or with the help of ongoing formal developments [6]. Among these
systematics are those arising from the finite extents of space-time in these calculations.1 The finite-
volume (FV) corrections to the mass of single hadrons are fully governed by the finite-range of
hadronic interactions, and are known to be exponential in the spatial extent of the volume, L, and
the mass of the pion, mπ , scaling as e−mπ L/L at leading order (LO) [7]. For the two-hadron bound
states, due to the introduction of a new scale in the system, i.e., the binding momentum of the
bound states, κ , further volume dependences arise in the calculated energies, which at LO scale as
e−κL/L. For near-threshold bound states such as the deuteron, these latter corrections can be rather
large even in small to intermediate volumes at the physical point – corresponding to the physical
light-quark masses (see Sec. 3 for a quantitative demonstration of this fact in the deuteron system).
This talk aims to review a recent proposal in Ref. [1] that leads to a considerable reduction of such
volume effects with judicious choices of boundary conditions (BCs) in the two-hadron systems in a
finite cubic volume. Other (closely related) strategies such as introducing multiple center-of-mass
(CM) boosts to the two-nucleon systems can be found in, e.g., Refs. [8, 9].

The most commonly used lattice geometries are (hyper) cubic and the boundary conditions that
are generally imposed on gauge and quark fields are periodic (anti-periodic for quark fields in the
temporal direction). These BCs can be simply generalized to twisted BCs (TBCs) by allowing the
quark fields to acquire a non-unity phase at the boundaries, ψ(x+nL) = eiθ ·nψ(x), characterized
by a twist angle 0 < θi < 2π in the ith Cartesian direction, with n being an integer triplet. This
allows the (free) single-hadron momentum modes to take non-integer values, p = 2π

L + φφφ

L where φφφ

is the corresponding twist angle of the hadron due to the TBCs imposed on its (valence) quark-level
interpolator. These BCs were first introduced in the (S-wave) two-nucleon systems in Ref. [10]
as a knob to shift the location of FV energy levels2 and therefore provide further kinematic inputs
to a modified Lüsher-type quantization condition (QC) [11, 12] that gives access the scattering
amplitudes. It was shortly realized that such BCs can as well be used in LQCD calculations of
transition matrix elements to resolve the threshold region without requiring large lattice volumes,
e.g., [13, 14]. In this review I focus on one aspect of these BCs, namely their role in improving
the volume dependence of binding energies in the two-hadron systems with an emphasis on the
deuteron. I devote Sec. 2 of this review to sketch a derivation of the most general FV QC for two-
baryon systems with arbitrary TBCs as we first presented in Ref. [1]. This QC is used in Sec. 3 to
investigate the volume effects on the deuteron binding energy at the physical point, and has enabled

1We take the temporal extent of the volume to be infinite in this study. In reality the finite-time (i.e. thermal) effects
due to backward propagating states must be taken into account, and be quantified, in any LQCD calculation.

2The effectiveness of this method in two-hadron systems with identical hadrons, or with equal twist angles imposed
on each hadron, is lost as discussed in this review. This point must be be kept in mind when consulting Ref. [10].
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us to identify the twist angles, or combinations thereof, that give rise to significant cancellations of
volume effects. I conclude by several comments in Sec. 4.

2. Finite-volume Quantization Condition

The most general QC for two spin- 1
2 baryons can be obtained from that of two nucleons as

derived in Ref. [15],3 upon accounting for relativistic kinematics that will be considered here,
as well as modifications due to the use of TBCs. These only alter the on-shell kinematics of
the system, and therefore modify the allowed non-interacting momentum modes in the volume.4

In order to identify these modes, let us consider the two-hadron wavefunction in the lab frame
ψLab [17, 8]. This wavefunction is subject to the TBCs,

ψLab(x1 +Ln1,x2 +Ln2) = eiφφφ 1·n1+iφφφ 2·n2 ψLab(x1,x2), (2.1)

where x1 and x2 denote the position of two hadrons, φφφ 1 and φφφ 2 are their respective twist angles,
and n1,n2 ∈ Z3. Denoting the total (conserved) momentum of the system by P = (E,P) in the lab
frame, the equal-time wavefunction of the system is

ψLab(x1,x2) = e−iEX0+iP·X
ϕLab(0,x1−x2), (2.2)

where X is the position of the CM, X = αx1 +(1−α)x2 with α = 1
2

(
1+ m2

1−m2
2

E∗2

)
for particles of

masses m1 and m2 [8], and where the total CM entergy of the systemm is E∗=
√

E2−P2. Since the
CM wavefunction is independent of the relative time coordinate [17], one has ϕLab(0,x1−x2) =

ϕCM(γ̂(x1−x2)), where the boosted vectors are defined as γ̂x = γx‖+x⊥ with γ = E/E∗. x‖ (x⊥)
is the component of x that is parallel (perpendicular) to P. By writing Eq. (2.1) in terms of ϕCM it
follows that

eiαP·(n1−n2)L+iP·n2L
ϕCM(y∗+ γ̂(n1−n2)L) = eiφφφ 1·n1+iφφφ 2·n2 ϕCM(y∗), (2.3)

where y∗ = x∗1− x∗2 is the relative coordinate of two hadrons in the CM frame. Now one can take
the Fourier transform of this relation to arrive at the system’s allowed relative momenta,

r =
1
L

γ̂
−1
[

2π(n−αd)− (α− 1
2
)(φφφ 1 +φφφ 2)+

1
2
(φφφ 1−φφφ 2)

]
, (2.4)

where we have used P = 2π

L d+
φφφ 1+φφφ 2

L with d ∈ Z3. The sum over momentum modes in the QC is
a sum over integer vectors n ∈ Z3 in Eq. (2.4). This QC can be written in general as a determinant
condition

det
[
(M ∞(p∗))−1 +δG V (p∗)

]
= 0, (2.5)

3The case of two spin-0 particles as well as a spin-0 and a spin- 1
2 particle can be obtained from the result presented

in this section by inputting the corresponding values of spin in Eq. (2.6). For two hadrons with arbitrary spin the most
general QC is presented in Ref. [16].

4In deriving this QC, the exponential corrections of the form e−mπ L – that are arising from the finite range of
hadronic interactions – are neglected.
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where M ∞ is the infinite-volume scattering amplitude and δG V is a FV matrix whose elements in
the total angular momentum basis can be written as

[
δG V ]

JMJ ,LS;J′M′J ,L′S′
= iη

p∗

8πE∗
δSS′

[
δJJ′δMJM′J δLL′+ i∑

l,m

(4π)3/2

p∗l+1 cd,φφφ 1,φφφ 2
lm (p∗2;L)

× ∑
ML,M′L,MS

〈JMJ|LML,SMS〉〈L′M′L,SMS|J′M′J〉
∫

dΩ Y ∗LML
Y ∗lmYL′M′L

]
. (2.6)

p∗ is the momentum of each particle in the CM frame. η = 1/2 for identical particles and η = 1
otherwise. 〈JMJ|LML,SMS〉 are Clebsch-Gordan coefficients, where J is the total angular momen-
tum, MJ is the eigenvalue of the Ĵz operator, and L and S are the orbital angular momentum and
the total spin of the system, respectively. The volume dependence and the dependence on the BCs
show up in the kinematic functions cd,φφφ 1,φφφ 2

lm (p∗2;L), defined as

cd,φφφ 1,φφφ 2
lm (p∗2;L) =

√
4π

γL3

(
2π

L

)l−2

Z
d,φφφ 1,φφφ 2

lm [1;(p∗L/2π)2], (2.7)

with

Z
d,φφφ 1,φφφ 2

lm [s;x2] = ∑
r

|r|l Ylm(r)
(r2− x2)s , (2.8)

where we already have determined the momentum modes r to be used in the FV sums in Eq. (2.4).
This completes the derivation of the QC in Eq. (2.5). The QCs corresponding to PBCs [17, 8] can
be straightforwardly obtained from Eqs. (2.5) and (2.6) by setting φφφ 1 = φφφ 2 = 0. Our result also
recovers two limiting cases that are considered in Ref. [18] for the use of TBCs in the scalar sector
of QCD. As is clear from Eq. (2.4), for particles of equal mass (e.g., the np system in the isospin
limit), imposing the same TBCs on the particles (e.g., corresponding to imposing the same twist
on the u and d quarks in the np system) will eliminate the dependence of the CM energy on the
twist angles. This means that one can not shift the location of the CM energy levels by changing
the twist angle.

3. Deuteron Spectra and Volume-effects Improvement

The volume-dependence of the binding energies can be obtained from the QC derived in Sec.
2 by performing an analytic continuation in momentum, p∗ = iκ , where κ denotes the binding
momentum of a bound state with binding energy B (in the non-relativistic limit, B =−(E∗−m1−
m2) ≈ κ2/2µ where µ denotes the reduced mass of the system). To quantitatively illustrate the
effect of BCs on the energies, we focus on the deuteron, the lightest nucleus at the physical point
with a binding energy of B∞

d = 2.224644(34) MeV. Due to the negligible scattering in higher
partial waves at low energies, the infinite-dimensional QC in Eq. (2) can be truncated to a finite
space where only the contributions from scattering channels with L≤ 2 are taken into account. This
QC will be used in upcoming studies of two-nucleon systems with TBCs to constrain the scattering
parameters in these channels, including the S−D mixing parameter. However, here we take the
fits to experimentally known phase shifts and mixing parameters – when extrapolated to negative
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energies [9] – to in turn predict the expected spectrum in a finite volume with a selection of TBCs.
In particular, we choose the following twist angles: φφφ

p = −φφφ
n ≡ φφφ = (0,0,0) (PBCs), (π,π,π)

(APBCs) and (π

2 ,
π

2 ,
π

2 ) (i-PBCs), which at the level of the quarks, this implies that the twist angles
of the (valence) up and down quarks are φφφ

u =−φφφ
d = φφφ . We also set d = 0 in Eq. (2.4) so that the

np system is at rest in the lab frame.

The energy levels obtained from the QC in Eq. (2.5) correspond to different irreducible repre-
sentations (irreps) of the point symmetry group of the FV calculation. For the case of i-PBCs, the
symmetry group is C3v and the first lowest-lying energy levels correspond to the two-dimensional
irrep E and the one-dimensional irrep A2 of the C3v group, respectively. As is seen from Fig. 1,
at volumes as small as ∼ (9 [fm])3, the FV energies in both irreps are already very close to the
infinite-volume value.5 The spin-averaged energy, defined as −1

3(2B(E)
d +B(A2)

d ), provides even
better agreement with the infinite-volume value with negligible volume effects.
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to include only channels with L ≤ 2 (requiring J ≤ 3) because of the size of the low-energy phase
shifts in the other channels. For arbitrary twist angles, the truncated QC can be represented by a
27×27 matrix in the |JMJ(LS)� basis, the eigenvalues of which dictate the energy eigenvalues. Fits
to the experimentally known phase shifts and mixing parameters [67–70] are used to extrapolate
to negative energies [52] to provide the inputs into the truncated QC, from which the deuteron
spectrum in a cubic volume with TBCs are predicted. The scattering parameters entering the
analysis are δ1α, �1, δ1β , δ(3P0), δ(3P1), δ(3P2), δ(3D2), δ(3D3), where the Blatt-Biedenharn (BB)
parameterization [71] is used in the J = 1 sector. The twist angles explored in this work are
φp = −φn ≡ φ = (0, 0, 0) (PBCs), (π,π,π) (APBCs) and (π2 , π

2 , π
2 ). At the level of the quarks,

this implies that the twist angles of the (valence) up and down quarks are φu = −φd = φ. We
also set d = 0 in Eq. (16) so that the np system is at rest in the lab frame. The reason for
this choice of twist angles is that they (directly or indirectly) give rise a significant cancellation
of the leading FV corrections to the masses of the nucleons, as shown in Sec. II. The number of
distinct eigenvalues of (M∞)−1 + δGV , and their degeneracies, reflect the spatial-symmetry group
of the FV. Calculations with φ = 0 respect the cubic (Oh) symmetry, while for φ = (π2 , π

2 , π
2 ) the

symmetry group is reduced to the C3v point group. 7 However, for φ = (π,π,π) the system has
inversion symmetry, and respects the D3h point symmetry [72]. By examining the transformation
properties of the cd,φ1,φ2

lm functions under the symmetry operations of these groups, certain relations
are found for any given l. These relations, which are tabulated elsewhere, e.g. Refs. [12, 33, 52, 73],
can be used to block-diagonalize the 27 × 27 matrix representation of the QCs, where each block
corresponds to an irrep of the point group symmetry of the system. For the selected twist angles,
the QCs of the irreps of the corresponding point groups that have overlap with the deuteron are
given in the appendix B .

For the (π2 , π
2 , π

2 ) twist, there are two irreps of the C3v group, namely the one-dimensional
irrep A1 and the two-dimensional irrep E, that have overlap with the 3S1-3D1 coupled channels.
Fig. 2(a) shows the binding energy (the CM energy minus the rest masses of the nucleons), −Bd =
E∗ − Mp − Mn, as a function of L corresponding to A2 irrep (blue curve) and E irrep (red curve),
obtained from the QCs in Eqs. (B5,B6). Even at L ∼ 9 fm, the deuteron binding energies extracted
from both irreps are close to the infinite-volume value. In particular, calculations in the E irrep
of the C3v group provide a few percent level determination of the deuteron binding energy in this
volume. The black solid curve in Fig. 2 represents the S-wave limit of the interactions, when the
S-D mixing parameter and all phase shifts except that in the S-wave are set equal to zero. The
MJ -averaged binding energy, −1

3(2B
(E)
d + B

(A2)
d ), converges to this S-wave limit, as shown in Fig.

2(b) (the A2 irrep contains the MJ = 0 state while E contains the MJ = ±1 states). In order
to appreciate the significance of calculations performed with the φ = (π2 , π

2 , π
2 ) twist angles, it is

helpful to be reminded of the volume dependence of the deuteron binding energy in calculations
performed with PBCs. For PBCs, the only irrep of the cubic group that has overlap with the 3S1-3D1

coupled channels is the three-dimensional irrep T1, Eq. (B4), and the corresponding binding energy
is shown in Fig. 3(a) (blue curve). As is well known, the binding energy deviates significantly
from its infinite-volume value, such that at L = 9 fm the FV deuteron is approximately twice as
bound as the infinite-volume deuteron. For APBCs, two irreps of the D3h group overlap with the
deuteron channel, A2 and E (Eqs. (B7,B8)), and yield identical binding energies as shown in Fig.
3(a) (red curve). As seen in Fig. 3(a), the deuteron becomes unbound over a range of volumes and
asymptotes slowly to the infinite-volume limit. However, in analogy with the nucleon masses, the

7 There is a correspondence between the FV spatial symmetry in twisted calculations with the φp �= φn and the
FV symmetry in (boosted) NN calculations with PBCs when the isospin breaking is considered. For example, the
point symmetry group corresponding to twisted calculations with φp = −φn = (0, 0, π

2
) and that of the physical

np system with P = 2π
L

(0, 0, 1) with PBCs are both C4v.

E
S-wave
A2

L = ∞
(2 E + A2)/3

Figure 1: The deuteron binding energy as a function of L using i-PBCs (φφφ p =−φφφ
n ≡ φφφ = (π

2 ,
π

2 ,
π

2 )). The
blue curve corresponds to the A2 irrep of the C3v group, while the red curve corresponds to the E irrep. The
brown-dashed curve corresponds to the weighted average of the A2 and E irreps, − 1

3 (2B(E)
d +B(A2)

d ), while
the black-solid curve corresponds to the S-wave limit. The infinite-volume deuteron binding energy is shown
by the black-dotted line [1].

To appreciate the significance of i-PBCs in reducing the volume corrections to the deuteron
binding energy, one can compare the obtained energy levels with that of PBCs and APBCs, as
plotted in Fig. 2(a). As is seen, the FV energies of the deuteron (obtained from the T1 irrep of the
Oh group for the case of PBCs and the A2/E irreps of the D3h group for the case of APBCs) are
considerably large such that they make the deuteron in a finite volume either unbound or twice as
bound at a volume of ∼ (9 [fm])3. The energy level obtained by averaging the result of PBCs and
APBCs, however, enjoys a large cancellation of the volume effects and gives rise to a determination
of the infinite-volume value with an accuracy comparable to that obtained with the i-PBCs, Fig.
2(b).

The observed improvement of the volume-dependence of the deuteron binding energy can be

5This is almost the smallest volume that can be used in LQCD calculations of two-hadron systems to assure the
neglected exponential corrections to the Lüscher QC (of the form e−mπ L) are below percent level at the physical point.
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The remaining coefficients are dictated by the symmetry of the systems,

F1±1 = ∓e∓iπ/4 F10

F2,+2 = −F2,−2 =
1√
2

e∓iπ/4 F2±1

F30 = ∓ 4√
10

e±iπ/4 F3±3 = ± 4√
6
e∓iπ/4 F3±1 , F3−2 = F3+2

F4+2 = −F4−2 = − 2√
7
e∓iπ/4 F4±3 = 2e±iπ/4 F4±1 , F40 =

14√
70

F4±4 . (C8)

The coefficients presented in Table I and Eq. (C8) show that the leading volume dependences of the c0,φ,−φ
lm

functions are c00 = − κ
4π + O(e−2κL/L), c10 = O(e−κL/L), c22 = O(e−

√
2κL/L), c30 = O(e−κL/L), c32 =

O(e−
√

3κL/L), c40 = O(e−2κL/L) and c42 = O(e−
√

2κL/L).
i-PBCs: A2
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The coefficients presented in Table I and Eq. (C8) show that the leading volume dependences of the c0,φ,−φ
lm

functions are c00 = − κ
4π + O(e−2κL/L), c10 = O(e−κL/L), c22 = O(e−

√
2κL/L), c30 = O(e−κL/L), c32 =

O(e−
√

3κL/L), c40 = O(e−2κL/L) and c42 = O(e−
√

2κL/L).
i-PBCs: E

(b)

Figure 2: a) The deuteron binding energy as a function of L from PBCs (green curve) and from APBCs
(purple curve). The black-solid curve represents the average of these energies. b) A closer look at the
average in part (a) compared with energies obtained with i-PBCs, A2 (blue curve) and E (red curve) [1].

already understood by studying the S-wave limit of the truncated QC considered in this section,

p∗ cotδ
(3S1)|p∗=iκ +κ = ∑

n6=0
e−i 1

2 n·(φφφ p−φφφ
n) e−|γ̂n|κL

|γ̂n|L . (3.1)

The volume dependence of the deuteron binding energy originates from the right-hand side of this
equation. For the twist angles φφφ

p =−φφφ
n ≡ φφφ = (π

2 ,
π

2 ,
π

2 ), the first few terms in the summation on
the right-hand side of Eq. (3.1) (n2 ≤ 3) vanish, leaving the leading volume corrections to scale as
∼ e−2κL/L. A lesser cancellation occurs in the average of energies obtained with PBCs and APBCs,
giving rise to deviations from the infinite-volume energy by terms that scale as ∼ e−

√
2κL/L.

4. Further Discussions

We conclude by making two comments concerning the generality and the practicality of the
use of TBCs in LQCD calculations of two-hadron systems. Firstly, given that the energy eigenval-
ues in a finite volume are related to scattering amplitudes, in most applications the sizable volume
corrections are desirable as they give access to (Minkowski) scattering amplitudes that are other-
wise not accessible through (infinite-volume) Euclidean Green’s functions [11]. Once the scattering
amplitudes are constrained, binding energies can be obtained as poles in these amplitudes. Such
extraction may however require a parametrization of the energy dependence of the amplitudes (e.g.,
an effective-range expansion below the t-channel cut). Then the exponential volume-improvement
approach already provides an accurate determination of the infinite-volume binding energies in a
single volume. Further information regarding scattering parameters can be gained by analyzing the
volume effects through the Lüscher methodology if desired. Performing calculations with different
TBCs is advantageous again as it leads to further constraints on the scattering parameters by giving
access to extra kinematic points in a finite volume.

It will only be justified, in terms of the associated cost, to perform calculations with multiple
TBCs if the generations of new configurations of gauge fields are not required for any set of TBCs.
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As is pointed out in Ref. [19], imposing the TBCs only on the valence quarks (partial twisting) is
equivalent to the full twisting in the two-nucleon systems up to exponential corrections in volume
that have already been neglected in our formalism. This is due to the absence of those s-channel
diagrams in nucleon-nucleon interactions that involve intermediate hadrons containing a sea quark.
In the scalar sector of QCD the same conclusion has been drawn by the authors of Ref. [18].
Although in this sector such naively-harmful s-channel diagrams may exist, it can be shown that due
to the graded symmetry of the partially-quenched QCD, the same QCs arise as if the full twisting
were implemented, up to exponential corrections in volume. These observations ensure that one
can enjoy the advantages of the TBCs as discussed in this review and elsewhere in studies of two-
hadron interactions with a computational cost that is comparable to, e.g., the boosting method.

The author would like to thank Raúl Briceño, Thomas Luu and Martin Savage for their con-
tribution to the work reviewed in this talk, and for numerous interesting discussions over the topic
of this review. This work was supported by the US DOE contract DE-AC05- 06OR23177, under
which Jefferson Science Associates, LLC, manages and operates the Jefferson Laboratory, the DFG
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