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1. Introduction

SU(2) isospin breaking effects in hadron octet (and decuplets) are due tokzrgation of up
and down quark mass differences and electromagnetic éffette baryon octet is shown in the
Is—Y plane in Fig. 1. On the baryon octet ‘outer’ ring the effectsted mass differences are very

Y
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Figure 1: The baryon octet in the-Y plane.

small ~ O(few MeV). (The difference in masses between Yhe- const particles in this figure.)
A compilation of some lattice determinations of these mass splittings is given in thetedt pf
Fig. 2. However for the Sigma and Lambda baryons, sitting at the centres afctiet, the mass
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Figure 2: Left panel: Lattice determinations for isospin mass bregklue tou—d quark mass differences
for n-p, 2>t and=*-=0, together with a weighted average. Right panel: A sketchefheavyH, and
light, L, baryon(massey againstm, 4+ my — 2m for fixed my, — my. The mass splitting between the Sigma
and Lambda masses in the isospin limnit,(= my) is given by the difference between the (red) dashed lines;
if my # my then there is an additional mass difference due to mixinggigen by the (blue) lines. The
physical point is indicated by the filled (blue) circles.

splitting is much larger(Mso — Mpo)®*P = 76.959(23) MeV. This is mainly due to their different

1QED effects will not be considered here.
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wavefunctions. However despite the fact that both particles have theaamie contenty, d, s)
there is also a small additional isospin component due to mixing between theseveten thes
andd quarks have different masses, as depicted in the right panel of Rile have the situation
of ‘avoided level crossing’. All lines are at constang — my, the (red) dashed lines are for the
isospin limitm, = my, while the (blue) lines are for the casg — my # 0. The centre point is when
all quark masses are the same. We denote the two branchét bpd ‘L’. The mass splitting
between the Sigma and Lambda particles is given by the vertical differetaedn these points.

In this talk we determine thB—A mixing matrix and hence find the mixing angle and mass
splitting. Further details and results are given in [1].

2. Method

The strategy we employ here has been described in [2, 3]; we shalbdktesgre to cover the
mixing case. Briefly, in lattice simulations and in particular for the case coresidere of three
flavours there are many paths for the quark masses to approach tleappggt. We have chosen
here to extrapolate from a point on t88(3) flavour symmetry line (when all the quark masses are
equal tomp say) to the physical point. As will shortly be seen it is sufficient to congtusifor the
case of degenerateandd quark masses, i.en, = my = m together with the strange quark mass
ms. Thus we takgmg, mg) — (MY, mg), where ax denotes the physical point. To define the path
the choice here is to keep the singlet quark nrag®nstant, wheren=mg = 3(2m + mg), along
the trajectory. We now develop ti8J(3) flavour symmetry breaking Taylor expansion for hadron
masses beginning at the flavour symmetric point in terms of

Sy = my —m. (2.1)

The expansion coefficients are functiongwélone and the path is called the ‘unitary line’ as we
expand in both sea and valence quarks with the same masses. Thusdgmvidkept constant,
then the expansion coefficients in the Taylor expansion remain unalteettieviwe consider2 1
or 1+ 1+ 1 flavours, i.e. mass degeneratandd quark masses or not. This opens the possibility
of determining quantities that depend o# 1+ 1 flavours from just 2 1 flavour simulations.
Furthermore we can generalise t86(3) flavour breaking expansion to the case of partially
quenched, PQ, valence quark masggs(with possibly different masses to the sea quark masses
mq) without increasing the number of expansion coefficién&quivalently to eq. (2.1) we set

We now define a quark mass matriK and baryon mass matrM (.#) where
Mf 0 O 0 0 0 o0 O©
o M 0o 0O 0 O 0 O
o 0oM2 0 O 0 0 0
m 0 O z 5 >
0O O 0O M M 0 0 0
— 2 _ > PN
,/z_(gngo>, M) =1 0 o o M. M2, O 0 o | @3
s o 0 0 0 0 ML O O
0 O 0 0 0 0 Mé, 0
0 O 0 0 0 0 0 Mgo

2The advantage of using PQ valence quarks is that they are computaticinediger.
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and demantithat under allSU(3) transformations
M— M =U.n0" & M) =UM(#)UT. (2.4)

Mathematically under these transformations there is no change to the eigenvphysically
there is also no change, possibly just a relabelling (eg+> ms is equivalent to relabelling
Mp <> M=o,...). We write M? = zilzol Ki(mg, Ug)Ni, where theN; matrices are classified under
S andSU(3) symmetry and th& (my, Lq) are coefficients. Th& symmetry group is that of the
(equilateral triangl€s,) and has 3 irreducible representations: two singdet#\, and one doublet
E with element€E*. TheN; are mostly diagonal, e.§\; = diag(1,1,1,1,1,1,1,1), exceptNs, N,
N1o, Where theZ — A\ 2 x 2 sub-matrices are non-diagonal. Further details of the diagonal matrices
are given in [2]; the complete set is described in [1].

This gives for baryonsB(aab) with valence quarka, b, c on the outer ring of the octet

M3 = Pa, + P+, (2.5)
and for the baryonB(abc) at the centre of the octet (i.e. the<2 submatrix inM? in eq. (2.3))

M2, M2, 10 10 01 0 —i
_p g P : 2.6
<M,2\2M,2\A Mlor) TR oo )T Lao) TPl o (26

ThePs are functions of the quark masses with the symm@tander theS; permutation group and
are given to NLO as
Pa, = M3+ 3A1000
+§Bo(OMG + 3 + 3ME) + By (SHZ + S +Ope)
+3(Ba+Ba) [(Sc — Ota)® + (Sc — i) + (Sta— Shp)*| +O(3)
Per = 3A2(dHc — o)
+3B2(201 — SKZ — Spf)
+3 (B3 —Ba) [(Oc — Opta)® + (Ot — Ob)* — 2(Sta— SHy)*| +O(3)
P = “2Ax(3pp — OLha)
+2Bo(BE — 32) + %2 (Bs — Ba) [(8pc — Sin)? — (Spic — Opa)?] +O(3)
Pa, = 04+0(3), (2.7)

wheredpi = (da+ O+ dc) /3. NNLO, i.e.O(3) terms, have also been determined, [1]. Diag-
onalisation of eq. (2.6) yields

|V||?| =Py + Plé + Pé* + P,gz ) ME = Pa — Pé+ + Pé, + PKZ ) (2.8)

Although looking rather complicated, in the isospin limit when there is no mixing,etless
pansions reduce to those given in [2]. Writing the eigenvectorsyas (cosf, e '?sing) and
e, = (—€9sind, cosh) gives for the mixing anglé, and phasep

/P2 +P2

E A Pa

tan = *+——— tanp = —=, 2.9
. *=p (2.9)

3The SU(3) flavour breaking expansion holds for any function of the baryon nmesix; we have found that using
Mé gives slightly better fits thaNg alone.
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and close to the physical point we $3é&fo = My, Mo = ML (andBsop0 = 6).

Practically, when analysing the raw lattice results for the baryon massed)dttées to use
scale invariant ratios, which helps to make the data smoother. We defineateensplicitly using
singlet quantitiesXs, S= m,N,.... For the octet baryons it is convenient to define a ‘centre of
mass’ quantity

X§ = §(MZ+MT+MZ +MZ -+ MZ M2 )
= M§ + (Bo+ B1+ Bg) (&N + 6m§ + 6mE) + O(3). (2.10)
ExperimentallyXy® = 1.160 GeV. All singlet quantities have r®(dmy) terms and we have seen

[2] that they remain constant down to the physical point, enabling a relisédination of the
scale. Itis convenient to form dimensionless ratios within a multiplet

<
N
>
3
oY)

|\7|2

B

., S=mN,..., A= (2.11)

and use this in the Taylor expansions.
For example this gives faf — A mixing at LO in the unitary limit, the analytic results

|\7|Zo—|\7|/\o=\/§/&2\/5n'ﬁ+5ﬁﬁ+5n€, tan%:w. (2.12)
This shows clearly that any mass difference is dominated btlteefficient as thé, terms have
cancelled. This is different to the baryons on the outer ring, which are turaiof theA; and
A; coefficients (and the numerical values mean that it is actually dominated By treefficient).
Note also that in the isospin limit where there is no mixing, the mass square roqt (2.22)
simplifies considerably to give’63m.

3. Resaults

We use here a®(a) NP improved clover action with tree level Symanzik glue and mildly
stout smeared 2 1 clover fermions, [4], a8 = 5.50 on 32 x 64 and 48 x 96 sized lattices. We
have found thako = 0.12090 provides a suitable starting point on 8ié¢(3) symmetric line. The
quark mass (whether valence or unitary) is definedi@s- (1/kq — 1/Koc)/2, whereko is the
critical ko in the chiral limit along theSU(3) symmetric line. However this does not need to be
determined as id L it cancels.

The method is first to determine the physical quark masses using the pioamnd®equivalent
expansions to those described above (and of course only consigegndoscalar particles on the
outer ring), by fitting to unitary and PQ data. This is described in [3] andls® @se the results
from there. We then for the baryon octet use the unitary and PQ data tonitetetheA and B
coefficients. To be sure that ttf8J(3) flavour expansion is valid we restrict quark masses to a
range here taken to B8 ua| + [dp| + |OLc| < 0.2. This translates to nucleon massesd GeV.

(In fits it was then found thas was then compatible with zero.) Two simple plots which illustrate
the situation are the completely mass degenerate caseanduai/\ are the same

Sin = MZ(aad') = 1+ 3A15a + 3B1012, (3.1)
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(@” is a mass degenerate but distinct quark) and the ‘symmetric’ differeseglocatwee™ andA)

sym _ MZ(aab) — MZ(aab) — MZ(bba) + M2 (bba)

DM = = Ao+ Bo(Sla+ Op) 3.2

as shown in Fig. 3. Fd&x, the fitis very good and could be easily extended. As mentioned before
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Figure 3. Left panel: S5 from eq. (3.1). Right panelDy)," from eq. (3.2). Both are plotted against
dUa+ OUp. Points used in the fit are denoted by filled circles.

A is the relevant coefficient for mass splittings on the outer baryon ringDEyAS'}the symmetric
difference is chosen in order to minimise possible effects of terms involing- du,. The plot
has a sharp increase as the quark mass is reduced, and presumairpaymomial behaviour
there. As this is related to tie-/A mass splitting, this necessitates a restricted fit region. (It should
be noted that the unitary quark masses Hawe,| < 0.01.) The reason for this behaviour is due to
spin—spin interaction between the quarks. From the Dirac equation wetékpenagnetic moment
to beJ 1/m,, which might suggest a spin—spin interaction of the fatrh/(mymy). This has also
recently been proposed in [5].

Secondly we show a ‘fan’ plot for the21 flavour caseMZ(aab), M3 (adb), in Fig. 4. We
haveN(II1")[= Az (I1'17)], Z(lIs), =(ssl), Ns(ss8)[= Ass(sss’] andA(Il’s), Ajas(ssl). (Ns(ss$)
and/,s(ssl) are fictitious baryons, but provide additional useful data for the fits.jhissis the
diagonal case there is no mixing and from egs. (2.5), @&)= Pa, + P+, M = Pa, — Pe+. We
find good agreement with the expected ‘physical’ results.

For baryons on the outer ring of the octet we find that the central vafuee onass splittings
are in good agreement with previous results, [3] (see also the left phRg]. 2), however with an
increased error bar. This is the result of the situation depicted in Fig. Bavgneviously as shown
in the left panel plot, we were able to use a larger fit range 32@ndA° we find

Mso — Mpo = 79.44(7.37)(3.37)MeV,  tanBsop0 = 0.012345)(25). (3.3)

As anticipated, this gives a very smélllono < 1°. Taking the difference between thdyo — Mo
andM; (lls) — Mx(Ils) gives the contribution due to isospin breaking~00.01 MeV.
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Figure 4. The baryon ‘fan’ plot for the N’ and ‘A’ type particlesl\7|,%lo (No =N, Z, =, N5) and '\7'/2\0
(Ao = N, A\, Ajgs, Ns) versusdmy. The symbols are all unitary data. (The opaque triangulanbeys are
from comparison 22x 48 sized lattices and not used in the fits here.) The commomgyrit point is the
filled circle. The vertical dashed line is thig = 2+ 1 pure QCD physical point, with the opaque circles being
the numerically determined pure QCD hadron mass ratios-fot guark flavours. For comparison, the stars
represent the average of thieas32 of M 2(1I11”) = (M (ddu) + M5 Y(uud)) /2, M;2(lls) = Ve “(uds),
Mz2(lIs) = (M (dds) + Mg Huus)) /2 andMz2(ss) = (MEP Assd) + M (ssu)) /2.
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