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SU(2) isospin breaking effects in baryon octet (and decuplet) masses are due to a combination

of up and down quark mass differences and electromagnetic effects. These mass differences are

small. Between the Sigma and Lambda the mass splitting is much larger, but this is mostly due

to their different wavefunctions. However there is now alsomixing between these states. We

determine the QCD mixing matrix and hence find the mixing angle and mass splitting.
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Σ – Λ mixing R. Horsley

1. Introduction

SU(2) isospin breaking effects in hadron octet (and decuplets) are due to a combination of up
and down quark mass differences and electromagnetic effects1. The baryon octet is shown in the
I3–Y plane in Fig. 1. On the baryon octet ‘outer’ ring the effects ofu–d mass differences are very
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Figure 1: The baryon octet in theI3–Y plane.

small∼ O(few MeV). (The difference in masses between theY = const. particles in this figure.)
A compilation of some lattice determinations of these mass splittings is given in the left panel of
Fig. 2. However for the Sigma and Lambda baryons, sitting at the centre of the octet, the mass
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Figure 2: Left panel: Lattice determinations for isospin mass breaking due tou–d quark mass differences
for n–p, Σ−–Σ+ andΞ+–Ξ0, together with a weighted average. Right panel: A sketch of the heavy,H, and
light, L, baryon(masses)2 againstmu+md −2ms for fixed mu−md. The mass splitting between the Sigma
and Lambda masses in the isospin limit (mu = md) is given by the difference between the (red) dashed lines;
if mu 6= md then there is an additional mass difference due to mixing, asgiven by the (blue) lines. The
physical point is indicated by the filled (blue) circles.

splitting is much larger,(MΣ0 −MΛ0)exp= 76.959(23)MeV. This is mainly due to their different

1QED effects will not be considered here.
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Σ – Λ mixing R. Horsley

wavefunctions. However despite the fact that both particles have the samequark content (u, d, s)
there is also a small additional isospin component due to mixing between these states when theu
andd quarks have different masses, as depicted in the right panel of Fig. 2.We have the situation
of ‘avoided level crossing’. All lines are at constantmu−md, the (red) dashed lines are for the
isospin limitmu = md, while the (blue) lines are for the casemu−md 6= 0. The centre point is when
all quark masses are the same. We denote the two branches by ‘H ’ and ‘L’. The mass splitting
between the Sigma and Lambda particles is given by the vertical difference between these points.

In this talk we determine theΣ–Λ mixing matrix and hence find the mixing angle and mass
splitting. Further details and results are given in [1].

2. Method

The strategy we employ here has been described in [2, 3]; we shall extend it here to cover the
mixing case. Briefly, in lattice simulations and in particular for the case considered here of three
flavours there are many paths for the quark masses to approach the physical point. We have chosen
here to extrapolate from a point on theSU(3) flavour symmetry line (when all the quark masses are
equal tom0 say) to the physical point. As will shortly be seen it is sufficient to considerthis for the
case of degenerateu andd quark masses, i.e.mu = md ≡ ml together with the strange quark mass
ms. Thus we take(m0,m0) → (m∗

l ,m
∗
s), where a∗ denotes the physical point. To define the path

the choice here is to keep the singlet quark massm constant, wherem= m0 =
1
3(2ml +ms), along

the trajectory. We now develop theSU(3) flavour symmetry breaking Taylor expansion for hadron
masses beginning at the flavour symmetric point in terms of

δmq = mq−m. (2.1)

The expansion coefficients are functions ofm alone and the path is called the ‘unitary line’ as we
expand in both sea and valence quarks with the same masses. Thus provided m is kept constant,
then the expansion coefficients in the Taylor expansion remain unaltered whether we consider 2+1
or 1+1+1 flavours, i.e. mass degenerateu andd quark masses or not. This opens the possibility
of determining quantities that depend on 1+1+1 flavours from just 2+1 flavour simulations.

Furthermore we can generalise theSU(3) flavour breaking expansion to the case of partially
quenched, PQ, valence quark masses,µq (with possibly different masses to the sea quark masses
mq) without increasing the number of expansion coefficients2 . Equivalently to eq. (2.1) we set

δ µq = µq−m. (2.2)

We now define a quark mass matrixM and baryon mass matrixM(M ) where

M =





mu 0 0
0 md 0
0 0 ms



 , M2(M ) =



























M2
n 0 0 0 0 0 0 0

0 M2
p 0 0 0 0 0 0

0 0 M2
Σ− 0 0 0 0 0

0 0 0 M2
ΣΣ M2

ΣΛ 0 0 0
0 0 0 M2

ΛΣ M2
ΛΛ 0 0 0

0 0 0 0 0 M2
Σ+ 0 0

0 0 0 0 0 0 M2
Ξ− 0

0 0 0 0 0 0 0 M2
Ξ0



























, (2.3)

2The advantage of using PQ valence quarks is that they are computationallycheaper.
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and demand3 that under allSU(3) transformations

M → M
′ =UMU† ↔ M2(M ′) =UM2(M )U† . (2.4)

Mathematically under these transformations there is no change to the eigenvalues; physically
there is also no change, possibly just a relabelling (e.g.md ↔ ms is equivalent to relabelling
Mn ↔ MΞ0, . . .). We write M2 = ∑10

i=1Ki(mq,µq)Ni , where theNi matrices are classified under
S3 andSU(3) symmetry and theK(mq,µq) are coefficients. TheS3 symmetry group is that of the
(equilateral triangleC3v) and has 3 irreducible representations: two singletsA1, A2 and one doublet
E with elementsE±. TheNi are mostly diagonal, e.g.N1 = diag(1,1,1,1,1,1,1,1), exceptN5, N8,
N10, where theΣ – Λ 2×2 sub-matrices are non-diagonal. Further details of the diagonal matrices
are given in [2]; the complete set is described in [1].

This gives for baryons,B(aab) with valence quarksa,b,c on the outer ring of the octet

M2
B = PA1 +PE+ , (2.5)

and for the baryonsB(abc) at the centre of the octet (i.e. the 2×2 submatrix inM2 in eq. (2.3))
(

M2
ΣΣ M2

ΣΛ
M2

ΛΣ M2
ΛΛ

)

= PA1

(

1 0
0 1

)

+PE+

(

1 0
0 −1

)

+PE−

(

0 1
1 0

)

+PA2

(

0 −i
i 0

)

. (2.6)

ThePG are functions of the quark masses with the symmetryG under theS3 permutation group and
are given to NLO as

PA1 = M2
0 +3A1δ µ

+1
6B0(δm2

u+δm2
d +δm2

s)+B1(δ µ2
a +δ µ2

b +δ µ2
c )

+1
4(B3+B4)

[

(δ µc−δ µa)
2+(δ µc−δ µb)

2+(δ µa−δ µb)
2]+O(3)

PE+ = 3
2A2(δ µc−δ µ)
+1

2B2(2δ µ2
c −δ µ2

a −δ µ2
b)

+1
4(B3−B4)

[

(δ µc−δ µa)
2+(δ µc−δ µb)

2−2(δ µa−δ µb)
2]+O(3)

PE− =
√

3
2 A2(δ µb−δ µa)

+
√

3
2 B2(δ µ2

b −δ µ2
a)+

√
3

4 (B3−B4)
[

(δ µc−δ µb)
2− (δ µc−δ µa)

2]+O(3)

PA2 = 0+O(3) , (2.7)

whereδ µ = (δ µa+δ µb+δ µc)/3. NNLO, i.e.O(3) terms, have also been determined, [1]. Diag-
onalisation of eq. (2.6) yields

M2
H = PA1 +

√

P2
E+ +P2

E− +P2
A2
, M2

L = PA1 −
√

P2
E+ +P2

E− +P2
A2
. (2.8)

Although looking rather complicated, in the isospin limit when there is no mixing, these ex-
pansions reduce to those given in [2]. Writing the eigenvectors aseH = (cosθ ,e−iφ sinθ) and
eL = (−eiφ sinθ ,cosθ) gives for the mixing angleθ , and phase,φ

tan2θ =

√

P2
E− +P2

A2

PE+
, tanφ =

PA2

PE−
, (2.9)

3TheSU(3) flavour breaking expansion holds for any function of the baryon massmatrix; we have found that using
M2

B gives slightly better fits thanMB alone.
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and close to the physical point we setMΣ0 = MH , MΛ0 = ML (andθΣ0Λ0 = θ ).
Practically, when analysing the raw lattice results for the baryon masses, it isbetter to use

scale invariant ratios, which helps to make the data smoother. We define the scale implicitly using
singlet quantitiesXS, S= π,N, . . . . For the octet baryons it is convenient to define a ‘centre of
mass’ quantity

X2
N = 1

6(M
2
p+M2

n +M2
Σ+ +M2

Σ− +M2
Ξ0 +M2

Ξ−)

= M2
0 +

1
6(B0+B1+B3)(δm2

u+δm2
d +δm2

s)+O(3) . (2.10)

ExperimentallyXexp
N = 1.160GeV. All singlet quantities have noO(δmq) terms and we have seen

[2] that they remain constant down to the physical point, enabling a reliable determination of the
scale. It is convenient to form dimensionless ratios within a multiplet

M̃2 ≡ M2

X2
S

, S= π,N, . . . , Ãi ≡
Ai

M2
0

, B̃i ≡
Bi

M2
0

, (2.11)

and use this in the Taylor expansions.
For example this gives forΣ – Λ mixing at LO in the unitary limit, the analytic results

M̃Σ0 − M̃Λ0 =

√

3
2

Ã2

√

δm2
u+δm2

d +δm2
s , tan2θ =

(δmd −δmu)√
3δms

. (2.12)

This shows clearly that any mass difference is dominated by theÃ2 coefficient as thẽA1 terms have
cancelled. This is different to the baryons on the outer ring, which are a mixture of theÃ1 and
Ã2 coefficients (and the numerical values mean that it is actually dominated by theÃ1 coefficient).
Note also that in the isospin limit where there is no mixing, the mass square root in eq. (2.12)
simplifies considerably to give

√
6δml .

3. Results

We use here anO(a) NP improved clover action with tree level Symanzik glue and mildly
stout smeared 2+1 clover fermions, [4], atβ = 5.50 on 323×64 and 483×96 sized lattices. We
have found thatκ0 = 0.12090 provides a suitable starting point on theSU(3) symmetric line. The
quark mass (whether valence or unitary) is defined asµq = (1/κq − 1/κ0c)/2, whereκ0c is the
critical κ0 in the chiral limit along theSU(3) symmetric line. However this does not need to be
determined as inδ µq it cancels.

The method is first to determine the physical quark masses using the pion octetand equivalent
expansions to those described above (and of course only consideringpseudoscalar particles on the
outer ring), by fitting to unitary and PQ data. This is described in [3] and we also use the results
from there. We then for the baryon octet use the unitary and PQ data to determine theÃ and B̃
coefficients. To be sure that theSU(3) flavour expansion is valid we restrict quark masses to a
range here taken to be|δ µa|+ |δ µb|+ |δ µc| ∼< 0.2. This translates to nucleon masses of∼< 2GeV.
(In fits it was then found that̃B3 was then compatible with zero.) Two simple plots which illustrate
the situation are the completely mass degenerate case whenΣ andΛ are the same

SΣΛ ≡ M̃2
Σ(aaa′′) = 1+3Ã1δ µa+3B̃1δ µ2

a , (3.1)
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(a′′ is a mass degenerate but distinct quark) and the ‘symmetric’ difference case (betweenΣ andΛ)

Dsym
ΣΛ ≡ M̃2

Σ(aab)− M̃2
Λ(aa′b)− M̃2

Σ(bba)+ M̃2
Λ(bb′a)

4(δ µb−δ µa)
= Ã2+ B̃2(δ µa+δ µb) , (3.2)

as shown in Fig. 3. ForSΣΛ, the fit is very good and could be easily extended. As mentioned before

0.0 0.1 0.2
δµa

0

5
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Figure 3: Left panel: SΣΛ from eq. (3.1). Right panel:Dsym
ΣΛ from eq. (3.2). Both are plotted against

δ µa+δ µb. Points used in the fit are denoted by filled circles.

Ã1 is the relevant coefficient for mass splittings on the outer baryon ring. ForDsym
ΣΛ the symmetric

difference is chosen in order to minimise possible effects of terms involvingδ µa− δ µb. The plot
has a sharp increase as the quark mass is reduced, and presumably a non-polynomial behaviour
there. As this is related to theΣ–Λ mass splitting, this necessitates a restricted fit region. (It should
be noted that the unitary quark masses have|δma| ∼< 0.01.) The reason for this behaviour is due to
spin–spin interaction between the quarks. From the Dirac equation we expect the magnetic moment
to be∝ 1/ma, which might suggest a spin–spin interaction of the form∝ 1/(mamb). This has also
recently been proposed in [5].

Secondly we show a ‘fan’ plot for the 2+1 flavour case:M̃2
N(aab), M̃2

Λ(aa′b), in Fig. 4. We
haveN(lll ′′)[= Λ3l (ll ′l ′′)], Σ(lls), Ξ(ssl), Ns(sss′′)[= Λ3s(ss′s′′] andΛ(ll ′s), Λl2s(ss′l). (Ns(sss′′)
andΛl2s(ss′l) are fictitious baryons, but provide additional useful data for the fits.) Asthis is the
diagonal case there is no mixing and from eqs. (2.5), (2.8)M̃2

N = PA1 +PE+ , M̃2
Λ = PA1 −PE+ . We

find good agreement with the expected ‘physical’ results.

For baryons on the outer ring of the octet we find that the central values of the mass splittings
are in good agreement with previous results, [3] (see also the left panelof Fig. 2), however with an
increased error bar. This is the result of the situation depicted in Fig. 3 where previously as shown
in the left panel plot, we were able to use a larger fit range. ForΣ0 andΛ0 we find

MΣ0 −MΛ0 = 79.44(7.37)(3.37)MeV , tan2θΣ0Λ0 = 0.0123(45)(25) . (3.3)

As anticipated, this gives a very smallθΣ0Λ0 ∼< 1◦. Taking the difference between theMΣ0 −MΛ0

andM∗
Σ(lls)−M∗

Λ(lls) gives the contribution due to isospin breaking of∼ 0.01MeV.
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Figure 4: The baryon ‘fan’ plot for the ‘N’ and ‘Λ’ type particlesM̃2
NO

(NO = N, Σ, Ξ, Ns) and M̃2
ΛO

(ΛO = N, Λ, Λl2s, Ns) versusδml . The symbols are all unitary data. (The opaque triangular symbols are
from comparison 243×48 sized lattices and not used in the fits here.) The common symmetric point is the
filled circle. The vertical dashed line is theNf = 2+1 pure QCD physical point, with the opaque circles being
the numerically determined pure QCD hadron mass ratios for 2+1 quark flavours. For comparison, the stars
represent the average of the(mass)2 of M∗2

N (lll ′′)= (Mexp 2
n (ddu)+Mexp 2

p (uud))/2,M∗2
Λ (lls)=Mexp 2

Λ0 (uds),

M∗2
Σ (lls) = (Mexp 2

Σ− (dds)+Mexp 2
Σ+ (uus))/2 andM∗2

Ξ (ssl) = (Mexp 2
Ξ− (ssd)+Mexp 2

Ξ0 (ssu))/2.
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