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1. Introduction

Free-form smearing is a new gauge-invariant smearing technique thatiganally applied to
relativistic quarks [1]. We have applied this method for the first time to the @fasen-relativistic
heavy quarks to extract the spectrum of bottomonium and compared itsrparfce with the con-
ventional smearing methods of NRQCD: gauge-invariant gaussian sigeadrgauge-fixed wave-
function smearing.

2. Conventional Smearing M ethodsfor NRQCD

Gauge-invariant gaussian smearing is a popular quark field smearingdwetich enhances
the ground state contribution to a correlation function and suppressggations from excited
states. It is an iterative method given by

Py(x) = [1+ %A} nLﬂ(y) : (2.1)

whereA is the discrete gauge-covariant Laplacian operator, which contaige diald variables.
Another commonly used smearing technique for heavy non-relativisti&giraolves (Coulomb)
gauge-fixing the links and smearing the quark field to an arbritary shagee choice [2]:

PO =Y Fx-y)p(y) - (2.2)
y

A function f (x—y) which resembles the wave function of a physical state can enhance tivlgro
state signal. The functioh(x—y) can also be chosen to suppress the ground state, allowing for a
much cleaner excited state signal. Gauge-fixing is required since Eqig2@&)gauge-invariant.

3. Free-form Smearing Method

The free-form smearing method [1] combines the advantages of thert@med methods. It
allows one to construct a source with an arbitrary shape while retainirgegavariance. This is
accomplished by iteratively applying the gauge-invariant gaussian srgemnéthod as in Eq. (2.1)
to a point source at point so that gauge link paths connect to every paimn the source time

slice. The average of the norm of the sou(téy (x)||) = <\/Tr <G§(X)Gy(x)) > whereGy(x) is

the gaussian smeared heavy quark propagator at the source time step tiade is over spin and
colour, is used to divide out the approximate gaussian shafig(®f and leave a flat distribution
with small fluctuations. An arbitrary shape is then applied by simple multiplicationfafiction
f(x—Yy), and the free-form smearing operation is given by

7 By(x)
X)=————Ff(Xx—y) . (3.1
W= Tgyoom Y
A significant disadvantage of free-form smearing in its present fornatsttts not computationally
feasible to apply it at the sink. The reason is that one is required to smaEgrginty separately
and then perform a summation to obtain a momentum projection.
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The gaussian smearing parameters used in the free-form smearingyreoerea = 0.15
andn = 64. The free-form smeared correlation functions were fairly insemsitivchanges i
andn, so long as? is not too large. Stout smeared links (paramefers 0.15 andn, = 10 as
defined in [3]) were also used, but this only produced a minor improvement.

For bottomonium, hydrogen-like wave functions have been used with tlyegaed smear-
ing method [4] and were found to be quite effective. For this study, wéursgions of the form

S-wave: f(x)=<{ (r—b)e a (3.2)
(r—c)(r—b)ea
. g o Xi e*%
P-wave: fi(x) = { % (r—b) ot (3.3)
wave: fo(y) _ d XK€
D-wave: fij(x) = { %% (r — by ot (3.4)
F-wave: fijk(x):fqijike‘% (3.5)
G-wave: fiju(X) = %% %K € a (3.6)

wherer = | /33 +x3 +x3, % = sin(Z%) and the parameteta, b, ¢) are tuned individually to obtain
an optimal signal for the ground state, first excited state and, for thev8;eeen the second excited
state. A selection of optimized free-form smearing parameters is shown lie Tab

Table 1: Examples of optimized free-form smearing parameters from .2), (3.3) and (3.4).

ground state first-excited state second-excited
S-wave P-wave D-wave S-wave P-wave D-wave S-wave
a 1.6 2.0 25 2.8 3.0 3.5 3.0
b 2.8 4.5 6.5 2.13
c 6.0

RandonlJ (1) wall sources can often lead to significant reductions in statistical uncéetaai
meson correlation functions. The gaussian and gauge-fixed smearingdsigitien by Egs. (2.1)
and (2.2) can be applied trivially to a full random wall source. For the gaason that it is not fea-
sible to apply free-form smearing to the sink, it is very computationally expens implement a
free-form smeared full wall source. One would have to smear eveny ymdependently, multiply
each by a random unit complex number and sum the results:

N
Bu(x) = 5 2N Plxy) (3.7)
|

However, to obtain reduced statistical errors of the same quality as a fuauace it is sufficient

to use a partial wall source as illustrated in Fig. 1. Significant reductiortatistical uncertainties
were found for “sparse” 2and 4 sized wall sources and very little improvement when more
points were included in the wall. A4sized partial wall source was used to obtain the free-form
smeared results presented in the sections below. This wall size was natpaitational burden
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and the improvement was well worth the effort. The gaussian and gatggedinearing methods
presented below used a full wall source.

Reduction of Statistical Errors vs. Wall Size

Partial Wall Source (N :22 w | | | |
| oo Y (25) |
06y ® o T .e xblgng 1
.e w >:1 . . elew(xiz) . od. o Y (15) |
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Figure 1: Left frame: illustration of a randortd (1) partial wall source. Right frame: reduction of statistical
errors of theY' S-wave ground state and first-excited state andytheP-wave ground state energies as a
function of the number of points in the free-form smearediakwvall source.

A gauge field ensemble from the PACS-CS Collaboration was used for tdig [&]1 Iwasaki
gauge action, clover-Wilson fermion action, 198 configuration%;@%,a: 0.090713)fm, ns =
2+ 1 andm, = 156(7)GeV. The NRQCD action consists 6f(v*) terms, tree level coefficients
¢ =1 (0<i <6), tadpole improved mean link in Landau gauge= 0.8463, bare NR-quark
massM, = 1.95 and stability parameter= 4. The gauge-field ensemble and NRQCD action were
chosen to be the same as in [6].

4. Smearing Method Comparision

The gauge-invariant gaussian smearing method enhances the grotendigtel and sup-
presses excited states. Figure 2 shows a comparison of gaussian grnaeariinee-form smear-
ing optimized for the ground state for select P and D-waves of bottomonium efféctive mass
plateaus to the ground state much earlier for free-form smearing thamaf@issign smearing. A
local operator illustrates the overall improvement. Smearing is applied to theesbut not the
sink to allow a fair comparison. Also, smearing non-relativistic heavy quarikhe sink increases
statistical errors, which was also observed in Figs. 3 and 4 of [2].

Figure 3 compares effective masses for the gauge-fixed wave fusctiearing and free-form
smearing methods for P and D-wave bottomonium, where both methods wedddwpimize the
ground state. Plateaus occur at roughly the same number of time step#fondibods. Effective
mass plots of the two methods for P and D-wave bottomonium optimized for thexXied state
are shown in Fig. 4. The plateaus are at a higher energy than in Fig.iGating that the ground
state contribution has been suppressed. Although it is not obviously visiBligsn 3 and 4, the
statistical errors for the free-form smeared effective mass are smaller.

The bottomonium ground state and excited state energies are extracted bgameltétor
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Figure 2: Effective mass plots of free-form smeared and gauge-iamaigaussian smeared P and D-wave
bottomonium correlation functions. A local operator isoediown for comparison.

multi-exponential fits of the form
)= Ae™ | (4.2)
n

where two free-form smeared correlators (one optimized for the gretate and the other for the
first-excited state) and a local operator were fit simultaneously to, typifiséyexponentials. The
analysis was repeated using gauge-fixed wave function smearethtmgeRatios of the statistical
errors for the two methodggs:jﬁd are given in Table 4, statistical uncertainties from free-form
smearing are consistently smaller in all channels.
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Figure 3: Effective mass plots for the free-form smeared and gaugelfixave function smeared S, P and
D-wave bottomonium correlation functions where both mdtheere tuned to optimize the ground state.

5. Bottomonium Spectrum from Free-form Smearing

The bottomonium spectrum is extracted by simultaneous multi-correlator multirerpal
fits of free-form smeared correlation functions. A local operator, twluontains a mixture of
the low lying states, is also included in the fit. Reliable fit values are obtainethéos-wave
second excited state, S, P and D-wave first excited states and S, R, G-wave ground state
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Figure 4: Effective mass plots for the free-form smeared and gaugeHixave function smeared P and
D-wave bottomonium correlation functions where both mdthwere tuned to optimize the first-excited
state.

Table 2: Ratios of statistical errorswd for ground state and first-excited state energies extramned
multi-exponential fits. All ratios are greater than onegfferm smearing consistently has smaller errors
than gauge-fixed wave function smearing.

ground state first-excited state ground state first-excited state
5 1.1 14 D, E 1.7 14
3S; 1.2 13 D, To 1.7 1.8
p 1.7 26 3D, E 1.3 12
P 1.3 21 D, To 1.7 13
3P 1.4 21 3D3 Ay 2.7 2.4
R E 1.8 20 D3 To 2.3 17
BT 1.6 22

energies. The NRQCD energies are converted to masses in physicabyifikeng the upsilon
S-wave ground state to its experimental value [7] and adding the negessagy shift given by
M = M®P(Y(1S)) +a 1(aES™—aES™M(Y(1S))), whereaES™M is the dimensionless energy extracted
from simulations. The bottomonium spectrum from free-form smeareceletors in shown in
Fig. 5.

First results from lattice simulations for the D-wave first-excited state ardigiigd in Fig. 5.
They are below th&B-threshold and consistent with a quark model prediction of 10.45 GeV [8].
Clean first-excited state signals from free-form smeared correlagsgem in Fig. 4, were neces-
sary to get a robust fit of the D-wave first excitation.

6. Conclusions

Free-form smearing is an excellent method to extract the spectrum of baiitenmoand has
been used to obtain a first lattice result for the mass of the D-wave firdeéstate. Free-form
smearing gives smaller statistical errors than the gauge-fixed smearing raathadleaner ground
state signal than the gauge-invariant gaussian smearing techniquearkvotk is required to apply
free-form smearing to a full correlator matrix.
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Figure 5: Bottomonium spectrum extracted from simultaneous muitiemential fits of free-form smeared
correlation functions and current experimental values Highlighted (inside the blue oval) are first lattice
results of bottomonium D-wave first-excited states.
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