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We report our results on the central potential between two Omega baryons in the 2+1 lattice QCD.
Employing the HAL QCD method, we extract the Omega-Omega potential from the Nambu-
Bethe-Salpeter wave function, which encodes the scattering phase shift between Omega-Omega
in its asymptotic behavior. In numerical calculations, we employed two gauge ensembles, one was
generated by the CP-PACS/JLQCD Collaborations at L = 1.950(30)[fm], mπ = 871(1)[MeV]

and mΩ = 2104(8)[MeV], and the other was generated by the PACS-CS Collaboration at L =

2.902(42)[fm], mπ = 701(5)[MeV] and mΩ = 1966(6)[MeV]. Using the potential obtained in
lattice QCD, we calculate the phase shift of the Omega-Omega scattering and discuss a possibility
for an existence of a shallow Omega-Omega bound state. Although an existence for the Omega-
Omega bound state is inconclusive, we found that the Omega-Omega interaction is definitely
strong attractive, showing that the system at this quark masses is in the unitary region.
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1. Introduction

The nuclear potential is an important input for nuclear structure and astrophysical phenom-
ena. It has been determined from experimental data plus some model calculations. In principle,
however, one can derive the nuclear potential from the fundamental theory of strong interaction,
QCD. Recently, a new but first-principle method, called the HAL QCD method, has been proposed
to investigate nucleon-nucleon interactions in QCD on the lattice. The HAL QCD method can be
applied not only to the nuclear potential but also to other interactions. For example, baryon-baryon
interactions [1–3], meson-meson interactions [4, 5], hyperon-hyperon interactions [6–9], the LS
force [10], the anti-symmetric LS force [11], and three body force [12], have been investigated.
In addition, as an application of this approach, the structure of heavy nuclei and the equation of
state for neutron stars have been investigated using the nuclear potential derived from the lattice
QCD [13].

In this paper, we investigate the Omega-Omega interaction, as the first step to understand the
the decuplet-decuplet interaction. Some model calculations predicted an existence of bound states
in decuplet-decuplet systems. In particular, the Omega-Omega system is suitable to be studied,
since the Omega baryon is stable in QCD, unlike other decuplet baryons.

For the Omega-Omega interaction in the J = 0 channel, there have been several model calcula-
tions, which however seems contradicted with each other . Some predicted the strong attraction [14]
but the other did the weak repulsive force [15]. In addition, the lattice QCD investigation on the
Omega-Omega interaction by the finite volume method found the weak repulsion but with large
errors [16]. Therefore, in this study, we try to determine a nature of the Omega-Omega interaction,
attractive or repulsive, using the HAL QCD method.

2. HAL QCD method

We employ the HALQCD method to extract the Omega-Omega potential in lattice QCD. A
key quantity in the HALQCD method is the NBS wave function, which encodes informations of
scattering phase shifts in its asymptotic behavior [1–3].

The equal time NBS wave function concerned is defined by

ψn;α ′k′β ′l′;αβkl(t, t0,r)≡ ⟨0|Ωα ′,k′(t,r)Ωβ ′,l′(t,0)
∣∣Ωα,k(kn)Ωβ ,l(−kn); in

⟩
, (2.1)

where |Ω(kn)Ω(−kn); in⟩is a QCD asymptotic Omega-Omega in-state in the center of mass flame

with the relative momenta kn and the total energy En = 2
√

m2
Ω + k2

n. Local Omega operators, Ω(x)

and Ω, are taken as

Ωα ,k(x)≡ εabc [sT
a (x)Cγksb(x)

]
scα(x), Ωα,k(x)≡ Ω†

α,kγ0 = εabcsaα(x)
[
sT

b (x)γk1Csc(x)
]
, (2.2)

where a,b,c are color indices, εabcis the totally anti-symmetric tensor, γk is the gamma matrix, and
α is a spinor index. The charge conjugation matrix in the spinor space is taken as C ≡ γ4γ2 =

−C−1 =−CT =−C† in Euclidean space-time. The Omega-Omega potential is defined through the
following Schrödinger equation:

(En −H0)ψn(r) =
∫

d3r′U(r,r′)ψn(r′), (2.3)
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where H0 ≡ − 1
2µΩ

▽2 is the non-interacting part of the Omega-Omega Hamiltonian, and µΩ ≡
mΩ/2is reduced mass of the two-omega baryon system.

Note that the non-local but energy-independent potential U(r,r′) can be formally constructed
as

U(r,r′) =
Wn,Wn′<Wth

∑
n,n′

(En −H0)ψn(r)N−1
n,n′ψ

∗
n′(r

′), (2.4)

where Wth is the threshold energy of the Omega-Omega system, and N−1
n,n′ is the inverse of the inner

product matrix,

Nn,n′ ≡
∫

d3rψ∗
n (r)ψn′(r), Wn,Wn′ <Wth. (2.5)

Indeed it is easy to se that U satisfies eq. (2.3) as∫
d3r′U(r,r′)ψl(r′) = ∑

n,n′
(En −H0)ψn(r)N−1

n,n′Nn′,l = (El −H0)ψl(r), Wl <Wth. (2.6)

In practice, we employ the time dependent method [17] to extract the potential as

(
1

4mΩ

∂ 2

∂ t2 +
1

mΩ
▽2 − ∂

∂ t
)R(r, t, t0) =

∫
dr′U(r,r′)R(r′, t, t0), (2.7)

where

R(r, t, t0)≡
F(t, t0,r)
e−2m(t−t0)

= ∑
n

anψn(r)e−Wn(t−t0), (2.8)

and F(t, t0,r) is the propagator of two Omega particles (i.e. the Omega 4-point correlation func-
tion). This method does not require the grand state saturation for the extraction of potentials [17].

In addition, the derivative expansion of the non-local potential is introduced at low energy. In
this study, we keep only the leading-order term as

U (⃗r,⃗r′) =V (⃗r)δ (⃗r− r⃗′)+O (⃗▽) (2.9)

where V (⃗r) depends on quantum numbers of the Omega-Omega system. In our study, we fix both
quantum numbers as explained in the next section.

3. Projections

Let us consider projection to the JP = 0+state, where J is the total angular momentum and P
is the parity, from which we extract the Omega-Omega potential. To fix J and P, we consider the
total spin S and the orbital angular momentum L for the Omega-Omega system.

We first consider the total spin. The decuplet baryon has spin and Lorentz vector indices.
Since Omega baryon is heavy, we use non-relativistic operators for Omega as

Ω 3
2 ,

3
2
= −(ψΓ+ψ)ψ 1

2
(3.1)

Ω 3
2 ,

1
2
=

1√
3
[
√

2(ψΓZψ)ψ 1
2
+(ψΓ+ψ)ψ− 1

2
] (3.2)

Ω 3
2 ,−

1
2
=

1√
3
[
√

2(ψΓZψ)ψ− 1
2
+(ψΓ−ψ)ψ 1

2
] (3.3)

Ω 3
2 ,−

3
2
= (ψΓ−ψ)ψ− 1

2
(3.4)
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where Γ± ≡ 1
2(Cγ2 ± iCγ1) and ΓZ ≡ −i√

2
Cγ3 are used to construct spin-1 di-quark operators and ψ

represents the strange quark operator. Using these operators, we construct the S = 0 states as

(ΩΩ)0,0 =
1
2
(Ω 3

2 ,
3
2
Ω 3

2 .−
3
2
−Ω 3

2 ,
1
2
Ω 3

2 .−
1
2
+Ω 3

2 ,−
1
2
Ω 3

2 .
1
2
−Ω 3

2 ,−
3
2
Ω 3

2 .
3
2
). (3.5)

Secondly, we consider the projection of the orbital angular momentum. The wall-source au-
tomatically pick up the L = 0 (A1) state, while, for the sink operator, we employ the cubic group
projection defined by

Pa
ν =

da

g

g

∑
i

Da
νν(Ri)

∗Ri, (3.6)

where a represents an irreducible representation of the cubic group, whose dimension is da, Ri is an
element of the cubic group and acts on r⃗ in the sink operator. Da(Ri) is the corresponding matrix
in the irreducible representation acting on spin components, and g is the order of the cubic group.
We use the A1 representation to pick up the L = 0 state.

In our numerical calculation, we consider the Omega-Omega state with zero total spin ( S = 0)
and zero orbital angular momentum (L = 0), so that the total angular momentum and the parity,
which are conserved, become zero (J = 0) and positive (P =+).

4. Numerical results

4.1 Simulation Set up

In our numerical simulations, we have employed two ensembles of gauge configurations, both
of which were generated by 2+1 flavor QCD with the renormalization group improved gauge action
and non-perturbatively O(a) improved Wilson quark action. The first ensemble, called the Set 1,
is consist of 700 gauge configurations generated by CP-PACS and JLQCD Collaborations [18]
at β = 1.83 (a ⋍ 0.12 fm) on the 163 × 32 lattice, whose physical extension becomes L = 1.92
fm, and at κud = 0.13760, κs = 0.13710 corresponding to mπ = 875(1) MeV and mΩ = 2104(8)
MeV. The second ensemble, called Set 2, contains 399 gauge configurations generated by PCAS-
CS Collaborations [19] at β = 1.90 (a ⋍ 0.09 fm) on the 323 × 64 lattice, whose physical extent
becomes L = 2.9 fm, and at κud = 0.13700, κs = 0.13640 corresponding to mπ = 701(5) MeV and
mΩ = 1966(6) MeV.

In both cases, to increase statics, we have employed 32 sources on different time slices per
configuration as well as the rotational symmetry and the charge conjugation symmetry. The pre-
liminary results using 9/32 of full statistics of Set 1 was reported in the last year [20]. All errors
are estimated by the Jack-Knife method with the bin-size of 1 configurations.

4.2 Omega-Omega Potential

Fig. 1 show the central potentials for Omega-Omega in J = 0 and P = + channel. The left
figure represents the potential obtained at t − t0 = 7,8,9 on the Set 1, while the right one show the
potential at t−t0 = 11,12,13 on the Set 2. In both cases, the central potential has the repulsive core
at short distance and strong attractive pocket at medium distance. We observe that t dependence
is negligible for the potential on the Set 2 but the potential at t − t0 = 9 (red) on the Set 1 differs
a litter from others, in particular at long distance. This t dependence of the potential on the Set 1
might be caused by the finite size effect due to the smaller volume of the Set 1 (L/2 = 0.96 fm).
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Figure 1: (Left) Central potential Vc(r) for the Omega-Omega 1S0 state on the Set 1 at t − t0 = 7(blue),
8(green), 9(red). (Right) The same but on the Set 2 at t − t0 = 11(blue), 12(green), 13(red).

4.3 Phase shift and Scattering length

We fit the potentials in Fig. 1 using the Gauss+(Yukawa)2 function given by

V (r) = a1e−a2r2
+a3(1− e−a4r2

)2(
e−a5r

r
)2, lim

r→0
V (r) = a1, (4.1)

or the 2Gauss+(Yukawa)2 function given by

V (r) = a1e−a2r2
+a3e−a4r2

+a5(1− e−a6r2
)2(

e−a7r

r
)2, lim

r→0
V (r) = a1 +a3. (4.2)

For the potential on the Set 1, since χ2/dof is better, we have employed the Gauss+(Yukawa)2

function, and obtained a1 = 1.14(1)103 MeV, a2 = 62.9(1.8) fm−2, a3 = −523(434) MeV, a4 =

2.21(83) fm−2, a5 = 1.49(38) MeV at t − t0 = 8, while in the case of the Set 2, we have adopted
the 2Gauss+(Yukawa)2 function, which gives a1 = 1.65(10)103 MeV, a2 = 125(400) fm−2, a3 =

480(107) MeV, a4 = 5.46(1.15) fm−2, a5 = −2.53(11.46)105 MeV, a6 = 3.76(7.09)10−1 MeV,
a7 = 3.62(40)10−1 MeV at t − t0 = 12. We use these parameters to solve the Schrödinger equation
in the infinite volume.

The phase shiftδ (k) , the scattering length a and the effective range re are extracted from the
wave function as

tanδ (k) = lim
x1,x2→∞

ψk(x2)sin(kx1)−ψk(x1)sin(kx2)

ψk(x1)cos(kx2)−ψk(x2)cos(kx1)
, k cotδ (k) =

1
a
+

1
2

rek2 +O(k4), (4.3)

where ψk is the wave function, k is the corresponding momentum, and a is the scattering length.
The behavior of the phase shift in Fig. 2 suggests that the Omega-Omega system has a bound state
in the 1S0 channel on the Set 1. On the other hand, the phase shift on the Set 2 shows that the
Omega-Omega system has strong attraction at low energy, which however is not strong enough to
form a bound state.

For the Set 1, we have a−1 (fm−1) =−2.1(1.1)×10−1, −1.6(0.9)×10−1, −9.3(3.5)×10−2

and re (fm) = 6.3(0.7)× 10−4, 6.1(1.2)× 10−4, 5.2(3.0)× 10−4, at t − t0 = 7,8,9, respectively.
For the Set 2, We can’t estimate the reasonable scattering length and effective range due to large
error bar.

5
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Figure 2: (Left) Phase shift δ (k) for the Omega-Omega 1S0 state on the Set 1 at t − t0 =7(blue), 8(green),
9(red). (Right) Same but on the Set 2 at t − t0 =11(blue), 12(green), 13(red).

4.4 Binding energy

We define S-matrix by using wave function.

ϕ(r) =
i
2
(Fl(+k)ĥ(−)

l (kr)−Fl(−k)ĥ(+)
l (kr)), Sl(k)≡

Fl(−k)
Fl(+k)

, (4.4)

where ĥ(±)
l is the Hankel function. We differentiate ϕl(r) in r to obtain the Fl(±k) and get S-matrix

by solving the following equation at large r.(
ϕl(r)

∂
∂ r ϕl(r)

)
=

(
ĥl

(−)
(kr) −ĥl

(+)
(kr)

∂
∂ r ĥl

(−)
(kr) − ∂

∂ r ĥl
(+)

(kr)

)(
Fl(+k)
Fl(−k)

)
, (4.5)

where both ϕl(r) and its derivative are calculated numerically. We determine an existence of the
bound state from the divergence of the S-matrix at some k, which gives the binding energy. As a
results, we find E = 0.96(1.06) MeV, E = 1.77(2.23) MeV, E = 6.69(6.81) MeV at t − t0 =7, 8,
9, respectively, for the Set 1. On the other hand, we did not find any bound state for the Set 2.

Although we find a bound state on the Set 1 at t − t0 =7, 8, 9, the binding energy is small and
is almost consistent with zero within large errors.

5. Summary

In this paper, we have investigate the Omega-Omega interaction extracting the corresponding
potential through the HAL QCD method. We found that the Omega-Omega potential obtained
from the J = 0 state is strongly attractive at low energy. Although whether the Omega-Omega
bound state can be produced by this strong attraction or not is inconclusive in our study, we can
definitely say that the Omega-Omega system at present quark mass is in the "unitary region", where
the attraction is strong so that the sallow bound state just appears or is about to form.

In future studies, it is interesting to investigate whether the strong attraction found for the
Omega-Omega system in this report remains at lighter quark masses.
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