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1. Introduction

The hadronic vacuum polarization Π(Q2) is of great importance in precision tests of the Stan-
dard Model of particle physics. It enters, for instance, the running of the QED coupling constant.
Additionally, it currently represents one of the dominant uncertainties in the Standard Model pre-
diction of the anomalous magnetic moment of the muon (g−2)µ .
The leading order hadronic contribution aHLO

µ is accessible by computing the hadronic vacuum
polarization function Π(Q2) and convoluting it with the an electro-weak kernel KE(Q2,mµ) [1–3],

aHLO
µ = 4α

2
∫

dQ2KE(Q2,mµ)
(

Π(Q2)−Π(0)
)

. (1.1)

The leading hadronic contribution to the vacuum polarization e2Π(Q2) in the spacelike domain can
be expressed through the vector meson spectral function via a once-subtracted dispersion relation,(

Π(Q2)−Π(0)
)
= Q2

∫
∞

0
ds

ρ(s)
s(s+Q2)

. (1.2)

In the dispersive approach [1] one replaces the spectral function with the experimentally accessible
R(s)-ratio by making use of the optical theorem. On the lattice the problem of determining Π̂(Q2)=

4π2(Π(Q2)−Π(0)) can be approached both from the left and the right hand side of Eq. 1.2.
In the following, we extend our analysis of the leading hadronic contribution to the anomalous
magnetic moment of the muon using both the four-momentum method [3–9] (i.e. by evaluating the
lhs of Eq. 1.2) and the recently introduced mixed representation method [10–12] (i.e. by evaluating
the rhs of Eq. 1.2). We systematically compare both methods and monitor their approach towards
the physical point. The preliminary results presented here are derived from local-conserved two-
point lattice vector correlation functions, computed on a subset of light two-flavor ensembles made
available to us through the CLS effort with pion masses as low as 190 MeV.

2. The four-momentum method to compute Π̂(Q2)

On a Euclidean lattice the vacuum polarization tensor can be defined as the four dimensional
Fourier transform of the vector current-current correlation function:

Πµν(Q)≡
∫

d4xeiQ·x〈 jµ(x) jν(0)〉. (2.1)

Here O(4) invariance and current conservation imply the tensor structure

Πµν(Q) =
(
QµQν −δµνQ2)

Π(Q2). (2.2)

We can therefore extract Π(Q2 ≥ Q2
latt,min(L)) from lattice calculations. However, computing

Π̂(Q2) following this recipe, one is faced with the problem that the additive renormalization Π(Q2 =

0) is not directly available since the lowest available Q2
min =Q2

latt,min(L) is dictated by the lattice dis-
cretization. Consequently it has to be estimated using an extrapolation procedure Q2

min→ Q2 = 0,
using e.g. a Padé Ansatz [8,9,14,15]. In addition the integrand of Eq. 1.1 is strongly peaked around
the mass of the lepton, and with the muon mass at mµ ' 105.65 MeV [13], this is generally below
the lattice momentum resolution. As a consequence the resulting value of aHLO

µ depends crucially
on the correct extrapolation and therefore precision lattice data at low momentum Q2 [14, 15].
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3. The mixed representation method to compute Π̂(Q2)

In addition to the four-momentum method, in [10–12] a new method to compute Π̂(Q2) with-
out the problem of having to estimate Π(Q2 = 0) was proposed. It has the advantage that it can
be used to calculate any value of the virtuality Q2. To this extent one approaches Π̂(Q2) from the
right hand side of Eq. 1.2 by noting the electromagnetic spectral function ρ(s) is directly linked
to the lattice vector meson current-current correlator 〈 jµ(x) jν(0)〉 in the mixed time-momentum
representation

G(x0,~k)
µ=ν
=
∫

d3xei~k~x〈Jµ(x0,~x)Jν(0)〉=
1
2

∫
∞

0
ds
√

sρ(s)e−
√

s|x0| . (3.1)

Exploiting this observation one arrives at an expression for Π̂(Q2) in terms of an integral over
Euclidean time of the mixed representation correlator [12]:

4π
2
(

Π(Q2)−Π(0)
)
= 4π

2
∫

∞

0
dx0 G(x0,~k = 0)

[
x2

0−
4

Q2 sin2(
1
2

Qx0)
]
. (3.2)

Additionally aHLO
µ can be evaluated directly without having to take the intermediate step of calcu-

lating Π̂(Q2) by plugging Eq. 3.2 into Eq. 1.1, see [11,12]. However, for comparing both methods
in the following, we find the extra step of computing Π̂(Q2) useful.
For a rigorous result, Eq. 3.2 must be integrated for all Euclidean times t → ∞, a requirement that
cannot be fulfilled on a finite lattice. However, since the correlator drops exponentially with time,
the integral can be truncated with only a small cost in accuracy, provided that the lattice data is
precise enough for a large enough time separation. Here, we aim to estimate the large distance part
of the integral in Eq. 3.2 by extrapolating the vector correlator to its asymptotic behavior. Conse-
quently the result for aHLO

µ depends crucially on the knowledge of the long distance correlator or
equivalently the low lying spectrum. In principle, the difficulty of extrapolating Q2

min→ Q2 = 0 in
the four-momentum method has been replaced by precisely determining the large distance behavior
of the mixed representation correlator.

4. Numerical Setup

In the following, we study the chiral behavior of aHLO
µ and Π̂(Q2) using both methods on

dynamical gauge configurations with two mass-degenerate quark flavors. The gauge action is the
standard Wilson plaquette action [16], while the fermions were implemented via the O(a) improved
Wilson discretization with non-perturbatively determined clover coefficient csw [17]. The config-
urations were generated within the CLS effort using algorithms based on the DD-HMC [18] and
MP-HMC packages [19]. We calculated local-conserved correlation functions using the same dis-
cretization and masses as in the sea sector on a set of lattice ensembles with β = 5.30 entailing a
lattice spacing of a = 0.0631(21) fm [20] and pion masses ranging between mπ = 451 MeV down
to mπ = 190 MeV, see Tab. 1 for a list of lattice parameters. Note, in the following, all correlation
functions for strange quark masses are available as partially quenched, valence observables.
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Lattice size L [fm] mπ [MeV] mπL Nmeas(Ncon f ) Label
64×323 2.0 451 4.7 4000(1000) E5
96×483 3.0 324 5.0 1200(300) F6
96×483 3.0 277 4.2 1000(250) F7
128×643 4.0 190 4.0 820(205) G8

Table 1: Table of lattice parameters. To study the chiral behavior the set of ensembles used is fixed at
β = 5.30 and a lattice spacing of a = 0.0631(21) fm [20]. All correlators were calculated with four sources
per configuration.

Figure 1: Left: Updated results for Π(Q2) using the four-momentum method with a = 0.0631(21)fm and
pion masses ranging between mπ = 451 MeV and mπ = 190 MeV. The insert shows the especially interesting
low Q2 region. Right: The mixed representation vector meson correlator on the same lattice ensembles. At
x0/a = 19 we extend the lattice data by a single exponential, since the signal is lost beyond this distance at
our current level of statistics.

5. Numerical Results

Updating our ongoing programme to compute aHLO
µ , in Fig. 1 (left) we show the results of

Π(Q2) obtained using the four-momentum method. The calculation closely follows the procedure
presented in [8, 9], as such local-conserved currents were used to compute Πµν(Q). Following
[9, 21], twisted boundary conditions were used to increase the set of available lattice momenta by
three twist angles. In addition propagators were computed on four maximally separated source
positions on every configuration. The small errors of the results in Fig. 1 (left) with pion masses
from mπ = 451 MeV down to mπ = 190 MeV indicate that we are capable of reaching very high
precision for all but the lowest Q2 values in this way. Turning to Fig. 1 (right), where we show
the corresponding mixed representation correlation functions, this decrease in accuracy manifests
itself by a rapidly deteriorating signal in G(x0) for x0/a ≥ 19 or x0 ≥ 1.1 fm. This is linked to a
substantial contribution in the low Q2 region from the low lying spectrum in the vector channel,
including the two-pion state. Therefore, the large distance behavior of G(x0), the sharp increase
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Figure 2: Calculating the difference of the HVP obtained from the four-momentum method and Π̂(Q2)

from the mixed representation method, we arrive at a measure to monitor the systematics in the two different
analyses. The top panels show Π̂(Q2) obtained from the four-momentum (STD) and mixed representation
(MRM) methods on the G8 (left) and F7 (right) lattice ensembles. The bottom shows the difference, i.e.
Π(0), for the Q2 available in the four-momentum method.

of errors in the low Q2 region, are a reflection of the lattice data not being accurate enough to
capture exactly this part of the spectrum. As a consequence, we conclude, that model-independent,
precision results for Π(Q2) require improvement in the lattice determination of the low lying vector
spectrum. In the mixed representation method one possibility is to concentrate on the low lying
masses of the correlation function by setting up a GEVP with additional interpolating operators.
Based on the phenomenological observation, that one expects large contributions to aHLO

µ up to
distances of∼ 1.5 fm [11,12], the results in Fig. 1 (right) indicate truncating Eq. 3.2 at x0 ' 1.1 fm,
will not suffice to obtain a full result of aHLO

µ . For this reason we smoothly extend the correlation
function at x0' 1.1fm by assuming the ground state is reached at this point and decays with a single
exponential. Although more elaborate models can be used to extend the correlation function, our
present data does not warrant the introduction of additional assumptions. In the following we
will use the extended correlator and updated Π(Q2) to compute aHLO

µ and Π̂(Q2). Note that the
determination of the long-distance behavior of the vector correlator involves a fit before this step.
The four-momentum method, on the other hand, relies on fitting the Q2 behavior close to Q2 = 0.

6. Comparing the four-momentum and mixed representation methods

The four-momentum and the mixed representation methods are based on different treatments
of lattice data for the vector correlator. If both methods are controlled, they should yield consistent
results for aHLO

µ and Π̂(Q2). Any deviation should arise from the different systematics of the
analysis machinery only. Hence, by imposing Π̂ST D(Q2)= Π̂MRM(Q2) we can compute the additive
renormalization Π(0), which can then be compared to the result from extrapolating Π̂ST D to Q2 = 0,

Π̂ST D(Q2) = Π̂MRM(Q2) ⇒ Π(0) = ΠST D(Q2)−
(

Π(Q2)−Π(0)
)

MRM
. (6.1)
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Figure 3: The chiral behavior of aHLO
µ in N f = 2+ 1q QCD at a = 0.0631(21) fm. The shown results are

obtained using the four-momentum (STD) and mixed representation methods (MRM). Together they give
an estimate of aHLO

µ taking into account the different analysis systematics. The physical point and PDG [13]
values are given in black for reference.

As a result are able to monitor the systematics due to the different analyses, while at the same time
determining Π(0). In Fig. 2 we show the results for Π̂(Q2) and Π(0) obtained via Eq. 6.1 on the
G8 (left) and F7 (right), i.e. mπ = 190 MeV and mπ = 277 MeV, lattice ensembles. To determine
Π̂(Q2) in the four-momentum method we use a Padé fit and follow the procedure outlined in [8,9].
The top panels of Fig. 2 show Π̂(Q2) obtained from the four-momentum (STD) and mixed repre-
sentation (MRM) methods. Since Q2 is discrete in the four-momentum method, these results are
shown as points, while those obtained using the mixed representation method are given as bands.
The bottom panels show the result of Eq. 6.1 over Q2 for those Q2 = Q2

ST D dictated by the four-
momentum results. In the direct comparison of Π̂(Q2) the two methods show very good agreement.
However, we find the results of Eq. 6.1 highlight the differences especially in the low Q2 region, as
the estimate of Π(0) shows a decreasing trend around Q2 ' 1GeV2 with a sharp increase around
the lowest available Q2. Above Q2 ' 2GeV2 for G8 and Q2 ' 4GeV2 for F7 we furthermore ob-
serve a flat behavior of the results. Since all deviations are within their respective errors, our results
indicate a very good agreement of both methods, with systematics within the quoted errors.
Integrating our respective results for Π̂(Q2) via Eq. 1.1 we are able to map out aHLO

µ as it ap-
proaches the chiral limit using both methods. This is shown in Fig. 3, whereby we added the
quenched strange quark contribution to the quoted numbers. Taking the results of both methods
together we can estimate aHLO

µ taking into account the different analysis systematics.

7. Conclusions

We presented results on the leading order hadronic contribution to the anomalous magnetic
moment of the muon as it approaches the chiral limit using two different analysis methods in
lattice QCD. Comparing the four-momentum and mixed representation methods we find they serve
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as independent cross-checks of each other, since they process equivalent data. As a consequence
they serve as a means to estimate the systematic uncertainties inherent in any calculation performed
in finite volume. We highlighted that a precision result of aHLO

µ requires accurate knowledge of the
asymptotic behavior of the vector meson current-current correlation function and discussed how
this can be systematically achieved in the mixed representation method. In the future this will
enable a precision determination of aHLO

µ and will allow for a straightforward inclusion of the
disconnected contributions.
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