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1. Introduction

An essential part in understanding QCD is to study the structure of hadrons, e.g. the nucleon.

Therefore, in the last decades a lot of effort was spent into obtaining the parton distribution function

(PDF) of the nucleon. In particular, q(x) is the PDF that gives the probability of finding a quark q

carrying a momentum fraction x of the parent hadron.

On the experimental side, deep inelastic scattering is an important tool to access the structure

of the nucleon. From the scattering cross section of these experiments structure functions of the

nucleon can be extracted. Perturbative QCD can then be used to relate the experimental results

obtained from different scales. However, perturbation theory does not give us any information about

the quark and gluon distributions themselves. For that one needs to assume input distributions,

which are then fitted to the available data set. Different groups make different assumptions for the

form of these input distribution and which data sets to include in the fit. This yields the PDFs albeit

with some model dependence.

Therefore, a method to compute the quark distribution from first principles is highly desirable.

On the lattice, however, it was up to now only possible to compute low moments of the PDFs (cf.

e.g. [1]).

Recently, a method to compute these distributions on a Euclidean lattice has been proposed in

[2], and has first been applied in [3]. We present an exploratory study of this method using a setup

of maximally twisted mass fermions with a focus on different methods to calculate the PDFs and

systematic errors appearing in the computations.

2. Euclidean formulation of the light cone operator

The quark distribution inside a nucleon is usually defined via matrix elements of the light cone

operator,

q(x) =
1

2π

∫

dξ−e−ixp+ξ−〈N|ψ(ξ−)ΓL (ξ−,0)ψ(0)|N〉, (2.1)

where ξ− = ξ 0−ξ 3
√

2
and L (ξ−,0) is the Wilson line from 0 to ξ−. Because deep inelastic scattering

is light cone dominated this expression has to be evaluated at ξ 2 ∼ 0. On a Euclidean lattice we

would thus have to select ξ 2 =~x2 + t2 ∼ 0, which is very hard to calculate due to a non-zero lattice

spacing.

A new idea is to compute a quasi distribution q̃ which is purely spatial and uses nucleons with

finite momentum; hence, it can be computed on the lattice. The quasi distribution is given by

q̃(x,µ2, pz) =
1

2π

∫

d∆z e−ixpz∆z〈N(pz)|ψ(∆z)γz
L (∆z,0)ψ(0)|N(pz)〉µ2 . (2.2)

Here ∆z is a distance in any spatial direction z and pz a momentum boost in this direction. Notice

that when pz → ∞ we recover the usual definition of the quark distributions in the infinite momen-

tum frame, which are equivalent to the light cone distributions of Eq. (2.1). However, on the lattice

one is limited to finite values of pz. Thus, the proposal is to calculate q̃ at finite pz and relate it to
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N(~pz, t0) N(~pz, ts)

y = (~y,τ)

∆z

t

Figure 1: Schematic picture of a possible Wick contraction of the quark fields in the three-point function.

the usual distributions via perturbation theory [4],

q̃(x,µ2, pz) =
∫

dy

|y| Z

(

x

y
,
ΛQCD

pz
,

µ

pz

)

q(y,µ2)+O

(

(

mN

pz

)2
)

. (2.3)

3. Implementation and algorithmic tests

This work presents the first steps of the PDF calculation, which is the computation of the ma-

trix elements appearing in Eq. (2.2), and some of the related algorithmic and conceptual challenges.

The first task is to compute the bare matrix element needed for the quasi distribution,

h(pz,∆z) = 〈N(pz)|ψ(∆z)γz
L (∆z,0)ψ(0)|N(pz)〉 . (3.1)

In order to compute these matrix elements a nucleon-nucleon three-point function is required:

C3pt(t,τ ,0) = 〈Γαβ Nα(~p
z, t)O(τ)Nβ (~p

z,0)〉, (3.2)

where Γαβ is a suitable parity projector. Here we will use the parity plus projector Γ = 1+γ4

2
.

A nucleon field boosted with a three momentum can be defined via a Fourier transformation

of quark fields in position space

Nα(~p
z, t) = ∑

~x

ei~pz~xεabcua
α(x)

(

dbT
(x)C γ5uc(x)

)

. (3.3)

In order to obtain a vanishing momentum transfer at the operator (Q2 = 0) we need to write it

as follows:

O(∆z,τ ,Q2 = 0) = ∑
~y

ψ(y+∆z)γz
L (y+∆z,y)ψ(y), (3.4)

with y= (~y,τ). After Wick contraction of the quark fields, the three-point function can be expressed

in terms of quark propagators. Fig. 1 shows a possible contraction.
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Finally we can extract the matrix element via a ratio of a three- and a two-point function

C2pt(t,0;~pz) = Γαβ Nα(~p
z, t)Nβ (~p

z,0)

C3pt(t,τ ,0;~pz)

C2pt(t,0;~pz)

0≪τ≪t
=

−ipz

E
h(pz,∆z), (3.5)

where E =
√

(pz)2 +m2
N is the total energy of the nucleon. As the flavor structure of the operator

we will use u−d in order to have an isovector operator and avoid disconnected diagrams.

An important conceptual problem one encounters when trying to compute the matrix element

is the calculation of the propagator connecting the sink with the operator insertion (marked red in

Fig. 1). Due to momentum projection there is a spatial sum on both ends of the propagator. For this

purpose an all-to-all propagator is needed. However, the computation using point sources would

take V = L3 ×T sets of inversion, which is too much computational effort.

Here we test two different approaches to compute the all-to-all propagator: the sequential

method, where we use standard methods to compute the two quark propagators that do not have the

operator insertion and contract the result to a sequential source. This can again be inverted and then

contracted with the operator to obtain the final result. However, in order to use this method the sink

has to be fixed, which requires a new inversion for each momentum. Thus, six sets of inversions

have to be computed for each flavor, accounting for positive and negative momenta in all three

spatial directions. For higher momenta this would have to be repeated.

The second method is the stochastic method, where we use sources that contain Z4 noise on

one single time-slice (cf. e.g. [5]). In addition we use diluted sources, which means that the noise is

only on one single spin and color slice. After inverting these sources, the obtained sink can be used

together with the source to estimate the all-to-all propagator. As a drawback we add stochastic

noise to the result, however, for this method one set of inversions for each flavor is sufficient to

account for all momenta.

For first initial tests we use a 163 × 32 twisted mass ensemble with β = 3.9 [6] generated

by the tmLQCD software package [7]. We choose a twisted mass parameter of µ = 0.004, which

corresponds to a pion mass of mPS ≈ 340 MeV. For the matrix element the source-sink separation is

6a and we only compute momentum pz = 1 2π
L

. We show only the real part of the matrix elements.

The imaginary part has a non-vanishing contribution, however, it is relatively small and can at

the moment be neglected. Fig. 2 shows the comparison between the sequential and the stochastic

method. For the stochastic method we show a different number of noise vectors. Note that six noise

vectors would compare to the computational cost of the sequential method.

Both methods yield results that are compatible within errors. One cannot directly compare

the errors of both methods. However, taking into account the different costs of inversions, both

methods are approximately equal.

In [3] the authors applied HYP smearing [8] to the gauge links. This is known to bring the nec-

essary renormalization factors closer to the corresponding tree level value. To study the influence

of HYP smearing we apply one and two steps of smearing and show the results in Fig. 3.

The results indicate that gauge link smearing increases the value of the matrix elements, espe-

cially for larger ∆z, however, it does not decrease the noise of the result, as it was observed e.g. for

the gluon moment [9]. Thus, for the following computations we will not use gauge link smearing

and try to compute the renormalization factor for each ∆z separately.
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Figure 2: Comparison of the sequential method with the stochastic method (with several numbers of noise

vectors). The computational cost of the sequential method equals six noise vectors of the stochastic method.

We show the real part of the matrix element.
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Figure 3: Different number of gauge link smearing steps for the real part of the matrix element.
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Figure 4: Real part of the matrix element for the first two momenta with 1000 measurements.

4. Results from N f = 2+1+1 ensemble

After these initial tests we continued with a larger ETMC production ensemble [10]. We de-

cided to use the stochastic method because, although both methods yield equal results, the stochas-

tic method is more flexible concerning the study of larger momenta. The matrix elements are com-

puted on a 323 × 64 lattice with N f = 2+ 1+ 1 flavors of maximally twisted mass fermions. This

ensemble has β = 1.95, which corresponds to a lattice spacing of a ≈ 0.078 fm and the twisted

mass parameter µ = 0.0055, which is a pion mass of mPS ≈ 373 MeV. All the results presented are

computed with a source-sink separation of 10a. With our current statistics of Ncon f = 1000 we are

able to extract the matrix element for the first two momenta. We display the result in Fig. 4. Note

that the value for ∆z = 0, which can be identified with the local vector current at Q2 = 0, has to be

renormalized with ZV , which is for this ensemble ZV = 0.627(4) [11]. After renormalization the

condition Fu−d
1 (Q2 = 0) = 1 (see e.g. [12]) is fulfilled within errors.

5. Conclusion and outlook

We have investigated a new method for the computation of quasi parton distributions and have

shown that using a stochastic estimator for the all-to-all propagator is a well-suited method for the

computation of the necessary matrix elements. Smearing is shown not to improve the statistical

uncertainty and was thus dropped.

Given the first results obtained using 1000 measurements, we are currently increasing statis-

tics, which can reach up to 30 000 measurements.
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At present, we are also working on the next steps of the project. This includes the implemen-

tation of the matching factors Z of Eq. (2.3). The factors were already computed to one loop in [4],

however the implementation and numerical solution of the equation are not easily done. In addition

we are working on implementing the finite nucleon mass correction [13].

In parallel, we are continuing to study systematic effects that might occur in the simulation,

e.g. we study the influence of excited states on the matrix elements by varying the source-sink sep-

aration. We also plan to include more momenta, in particular when the mentioned larger statistics

is available.

Another challenge is the renormalization of the quantities that are involved. One possibility

is to compute separate renormalization factors for the matrix elements with different ∆z. We are

in the process of testing different ideas for this renormalization process, details of which will be

presented elsewhere.

Finally, it would be attractive to use the new ETMC ensemble [14] to compute the quark

distribution directly at the physical value of the pion mass.
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