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1. Introduction

The electromagnetic form factors of the proton and neutron are quantities of continuous inter-
est both experimentally and theoretically. Electromagnetic scattering of nucleons reveals properties
such as their charge and magnetism, with insight on the distribution of charge within the nucleon.
More recently, precision experiments have revealed a surprising discrepancy in the charge radius
of the proton. Namely, the proton radius when measured recently via the Lamb shift of muonic hy-
drogen [1] has a value that is smaller by five standard deviations as compared to experiments using
electron scattering and hydrogen Lamb shift [2]. Lattice QCD can provide insight on the origin of
this discrepancy by evaluating from first principles the QCD contribution to the proton charge. So
far, although consistent across discretisation schemes, lattice simulations at heavier than physical
pion masses have underestimated the proton charge [3–5]. With simulations directly at the physical
pion mass now becoming available, chiral extrapolations are no longer required, thus eliminating
one source of systematic uncertainty and allowing direct contact with experiment. In this proceed-
ings contribution we present preliminary results of the nucleon electromagnetic form factors using
three ensembles of twisted mass fermion (TMF) configurations; two Nf = 2+ 1+ 1 ensembles at
pion mass 373 MeV and 210 MeV and one Nf = 2 ensemble at the near physical pion mass value
of 130 MeV.

2. Lattice Setup and Methods

The electromagnetic matrix element of the nucleon can be decomposed into the Dirac (F1) and
Pauli (F2) form factors:

〈N(p′,s′)| jµ |N(p,s)〉=
( m2

N

EN(p′)EN(p)

) 1
2
ū(p′,s′)Oµu(p,s), Oµ = γµF1(q2)+

iσµνqν

2mN
F2(q2),

(2.1)
with mN the nucleon mass, p (s) and p′ (s′) the initial and final momentum (spin) of the nucleon,
u are fermion spinors and q = p′ − p is the momentum transfer. Alternatively one can define
the so-called Sachs electric and magnetic form factors: GE(q2) = F1(q2)+F2(q2) and GM(q2) =

F1(q2)+ τF2(q2) with τ = q2

(2mN)2 . The slope of the form factors at zero momentum defines the

relevant radii, namely the Dirac and Pauli radii via: 〈r2
i 〉=− 6

Fi

dFi
dq2 |q2=0 and similarly for the electric

and magnetic radii 〈r2
E〉 and 〈r2

M〉.
On the lattice, one calculates an appropriate three-point correlation function:

Gµ(Γ;q; ts, ti) = ∑
xsxi

e−ip′xse−i(p′−p)xiΓ
αβ 〈χ̄β

N (xs; ts)| jµ(xi; ti)|χα
N (x0; t0)〉 (2.2)

with χN the nucleon interpolating operators, xs, xi and x0 the final (sink), insertion and initial
(source) coordinates and the local electromagnetic current: jµ(x) = 2

3 ū(x)γµu(x)− 1
3 d̄(x)γµd(x).

In this work we use the lattice conserved electromagnetic current [3], and thus lattice results need
no renormalisation. In our setup we fix p′ = 0 and carry out the sum over xs using a sequential
inversion through the sink. For this we require ts− t0 and the projection matrix Γ to be set before
the sequential inversion. The choices Γ4 = 1

4(1 + γ4) and Γk = ∑ j iΓ4γ5γ j isolate GE and GM

respectively.
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Figure 1: Diagrams contributing to the nucleon three-point correlation function, connected (left)
and disconnected (right).

The three-point correlation function has quark-connected and quark-disconnected contribu-
tions as shown in Fig. 1. Here we compute the isovector (V ) and isoscalar (S) combinations of
the operator: jµ

S
V
(x) = ū(x)γµu(x)± d̄(x)γµd(x). Assuming SU(2) flavour symmetry the discon-

nected contribution cancels for the isovector current, but does not in the isoscalar combination.
Such disconnected contributions are exceptionally difficult to compute on the lattice due to the
increased susceptibility they exhibit to statistical fluctuations. However, recent results using new
techniques have shown that at low momentum transfer they are small, of order of 1 %, compared to
the connected, at pion masses of around 300 to 400 MeV [6, 7]. From the isoscalar and isovector
combinations we can obtain the proton and neutron form factors through the linear combinations:
F p−Fn = Fu−Fd and F p +Fn = 1

3(F
u +Fd).
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Figure 2: The lattice spacing is set using the nucleon mass.

β L3×T
a mπ

[fm] [GeV]
Nf = 2+1+1, cSW = 0

1.95 323×64 0.082 0.373
2.10 483×96 0.064 0.210

Nf = 2, cSW = 1.57551
2.10 483×96 0.094 0.130

Table 1: The twisted mass fermion
ensembles used in this work.

In this work we present three ensembles of TMF configurations; two Nf = 2+1+1 ensembles
with mπ = 373 MeV (referred to as “B55”) and 210 MeV (referred to as “D15”) and one Nf = 2
ensemble with mπ = 130 MeV [8], referred to as the physical point ensemble. More details are
given in Table 1. The lattice spacings are determined by fitting the nucleon masses of 18 TMF
ensembles using the leading order heavy baryon chiral perturbation theory expansion: mN = m0

N−
4c1m2

π−
3g2

A
16π f 2

π

m3
π , as shown in Fig. 2. We require the curve to reproduce the physical nucleon mass

and allow the spacings to vary as fit parameters. This yields the spacings listed in Table 1 for the
ensembles used here.

For extracting the matrix element from the lattice data, we form an appropriate ratio of three-
point to two-point functions, which cancels unknown overlaps and exponential energy factors such
that in the limit of large time separations: ti− t0� 1 and ts− ti� 1, the contributions from excited
nucleon states are damped out, leaving a time-independent ratio (referred to as the plateau region):
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Figure 3: Extraction of the required matrix element is done via fitting to the plateau method (left)
or the summation method (right). In the left panel we compare the result of the summation method
(black line) with that of the plateau (yellow line) for the B55 ensemble.

RV
M(ti, ts;k2)

ts−ti�1−−−−→
ti−t0�1

GV
M(k2)[1+O(e−∆M(ts−ti),e−∆E(k)(ti−t0)] (2.3)

as illustrated for the isovector magnetic form factor in Fig. 3. ∆M (∆E) is the mass (energy)
gap of the nucleon ground to nucleon first exited state. With fixed sink time-slice, we vary the
insertion time-slice to identify and fit to the plateau region. This will be referred to as the plateau
method. To ensure ground state dominance, we invert for multiple sink-source separations ts− t0,
with the incremental EigCG algorithm as an efficient multiple right-hand-side solver [9]. With the
availability of multiple sink-source separations, we can also sum over the insertion time-slice ti to
obtain the summed ratio as a function of ts:

∑
ti

RV
M(ti, ts;k2)

ts�1−−→C+GV
M(k2)ts[1+O(e−∆M(ts−t0),e−∆E(k)(ts−t0))]. (2.4)

This allows an alternative extraction of the form factor via a two parameter linear fit, the so-called
summation method. Compared to the plateau method, the advantage is that excited states decay
with a larger exponential suppression factor determined by ts− t0 rather than ts− ti or ti− t0, while
the disadvantage is that a two parameter fit is required. In Fig. 3 we show an example of fits to the
summed ratio for momenta up to k2 = 6.

3. Results

In Fig. 4 we show results for the B55 ensemble for which we have carried out inversions
at seven sink-source separations for 1,200 configurations. We show the electric and magnetic
isovector Sachs form factors obtained via the plateau method and compare them to the summation
method to identify excited state effects. As the separation increases from 0.5 to 1.4 fm the form
factors become steeper, yielding larger electric and magnetic radii. However these results are still
in tension with experiment, shown by the curve which represents J. Kelly’s parameterisation of the
experimental results.
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Figure 4: The electric (left) and magnetic (right) nucleon form factors versus the momentum trans-
fer squared, for B55 for various values of ts (coloured symbols) and for the summation method (sm,
black asterisk). The solid line is J. Kelly’s parameterisation to the experimental data.

The radii are determined from the derivative of the form factors at Q2 = 0. Fitting the form
factors to a dipole form Fi(Q2) = Fi(0)/[1+Q2/M2

i ]
2 the radii are determined from the dipole

mass via 〈r2
i 〉= 12/M2

i with i = 1, 2, and similarly for the Sachs form factors to obtain the electric
and magnetic radii. For the Dirac and electric form factors F1(0) = GE(0) = 1 since we are using
the conserved current and thus only the mass is a fit parameter. F2(0) is fitted for and yields the
anomalous magnetic moment of the nucleon.

0.5 0.7 0.9 1.0 1.2 1.4 sm
ts t0  [fm]

0.18

0.20

0.22

0.24

0.26

0.28

〈 r2 1〉 V  [f
m

2 ]

0.5 0.7 0.9 1.0 1.2 1.4 sm
ts t0  [fm]

0.25

0.30

0.35

0.40

0.45

0.50

〈 r2 2〉 V  [f
m

2 ]

0.5 0.7 0.9 1.0 1.2 1.4 sm
ts t0  [fm]

2.4

2.6

2.8

3.0

3.2

3.4

3.6
FV 2

(0
)

Figure 5: The Dirac and Pauli isovector radii (left and centre), and the isovector magnetic moment
(right) for various ts and for the summation method. The notation is the same as in Fig. 4.

In Fig. 5, we show the isovector Dirac and Pauli radii and the isovector anomalous magnetic
moment for the B55 ensemble. Results extracted via fits to the dipole form as a function of the
sink-source separations, as well as the value extracted from the summation method. These results
corroborate the conclusion that as ts increases the radii become larger. We also observe that con-
tamination from excited states are suppressed after a sink-source separation of around 1.2-1.3 fm,
indicated by the agreement between plateau and summation methods beyond this distance.

Our results using all three ensembles, including the physical point ensemble, are shown in
Fig. 6, for the isovector electric and magnetic Sachs form factors. A single sink-source separation
of 1.2 fm is available for the mπ=210 MeV ensemble, while for the physical point we have sink-
source separations at 0.94, 1.13 and 1.32 fm, the largest of which is shown in Fig. 6, for around
1,400 configurations. We observe a steeper form factor as the pion mass is reduced, although more
statistics are required at the physical point for a definite conclusion. In the same figure the electric
and magnetic radii are also shown as a function of the pion mass, confirming the tendency towards
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Figure 6: The isovector electric (upper left) and magnetic (lower left) form factors for the three
TMF ensembles of this. The associated radii are shown in the right panel as a function of the pion
mass.

larger values as the pion mass is decreased.
We compare our results at the physical point with those of a recent calculation using clover

fermions at similar pion mass in Fig. 7 [10]. We see a consistency in the extracted form factors
between the two formulations. The isoscalar Pauli form factor FS

2 , not shown in Fig. 7, is found
consistent with zero in both cases.
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Figure 7: The isovector Dirac (left) and Pauli (centre), and the isoscalar Dirac (right) form factors
of this work, compared to results from the LHPC at mπ=149 MeV [10].

In Fig. 8 we show the isovector Dirac and Pauli radii as a function of the pion mass, for the
TMF ensembles analysed in this work and the clover ensembles analysed in Ref. [10]. We also
show the PDG values of these quantities and, for the case of 〈r2

1〉V , we include the recent result
obtained from muonium Lamb shift measurements. As the pion mass decreases the effect of the
excited states seem more pronounced indicated by the spread of the open symbols. However, the
errors also become larger and a study with increased accuracy is required. Both clover and TMF
results are in agreement, and seem to be converging towards the experimental values, although
errors are large and need to be drastically reduced to make contact with experiment.

4. Conclusions

We have presented preliminary results for the electromagnetic form factors of the nucleon
including a lattice QCD ensemble with a pion mass set to its physical value. A lattice at a heavier
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Figure 8: The isovector Dirac (left) and Pauli (right) radii as a function of the pion mass. The
diamonds are from this work while the squares are from the LHPC. Filled symbols are results
using the summation method, while open symbols are from the plateau method.

pion mass of 373 MeV was used for a thorough study of excited state effects, indicating that
a three-point function sink-source separation of ∼1.3 fm is sufficient for ensuring ground state
dominance. Our results at the physical point are in agreement with recent results using clover
fermions at a similar pion mass. Within large statistical errors, our results are either in agreement
or tend towards the experimental values as the pion mass is reduced. In order to make contact with
experiment, a 2% error in the radii is required, which amounts to more than a 10-fold increase in
statistics. Deflation algorithms in combination with all-mode-averaging [11] are currently under
investigation to efficiently achieve this.
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