
P
o
S
(
L
A
T
T
I
C
E
2
0
1
4
)
1
5
0

Nucleon axial form factors from two-flavour Lattice
QCD

P. M. Junnarkar∗a, S. Capitania, D. Djukanovica, G. von Hippelb, J. Huab, B. Jägerc,
H. B. Meyera,b, T. D. Raea, H. Wittiga,b

aHelmholtz-Insititut Mainz, bPRISMA Cluster of Excellence and Institut für Kernphysik,
Johannes Gutenberg-Universität Mainz, D-55099 Mainz, Germany.
cDepartment of Physics, College of Science, Swansea University, SA2 8PP Swansea, UK.
E-mail: junnarka@kph.uni-mainz.de, capitan@kph.uni-mainz.de,
djukanov@uni-mainz.de, hippel@kph.uni-mainz.de,
hua@kph.uni-mainz.de, jaeger@kph.uni-mainz.de,
meyerh@kph.uni-mainz.de, thrae@uni-mainz.de,
wittig@kph.uni-mainz.de

We present preliminary results on the axial form factor GA(Q2) and the induced pseudoscalar
form factor GP(Q2) of the nucleon. A systematic analysis of the excited-state contributions to
form factors is performed on the CLS ensemble ‘N6’ with mπ = 340 MeV and lattice spacing
a ∼ 0.05 fm. The relevant three-point functions were computed with source-sink separations
ranging from ts ∼ 0.6 fm to ts ∼ 1.4 fm. We observe that the form factors suffer from non-trivial
excited-state contributions at the source-sink separations available to us. It is noted that naive
plateau fits underestimate the excited-state contributions and that the method of summed operator
insertions correctly accounts for these effects.

The 32nd International Symposium on Lattice Field Theory,
23-28 June, 2014
Columbia University New York, NY

∗Speaker.

c© Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike Licence. http://pos.sissa.it/

mailto:junnarka@kph.uni-mainz.de
mailto:capitan@kph.uni-mainz.de
mailto:djukanov@uni-mainz.de
mailto:hippel@kph.uni-mainz.de
mailto:hua@kph.uni-mainz.de
mailto:jaeger@kph.uni-mainz.de
mailto:meyerh@kph.uni-mainz.de
mailto:thrae@uni-mainz.de
mailto:wittig@kph.uni-mainz.de


P
o
S
(
L
A
T
T
I
C
E
2
0
1
4
)
1
5
0

Nucleon axial form factors from two-flavour Lattice QCD P. M. Junnarkar

1. Introduction

The nucleon matrix elements of the iso-vector axial current can be parametrised in terms of
the axial form factor GA(Q2) and the induced pseudoscalar form factor GP(Q2), using Lorentz and
CPT invariance as well as isospin symmetry, as:

〈N, ppp′ |Aµ(x)|N, ppp〉= e−iqqq·xxxū(ppp′)
(
γ

µ
γ

5GA(Q2)+ γ
5 qµ

2m
GP(Q2)

)
u(ppp), (1.1)

where u(ppp) is a Dirac spinor with momentum ppp, Q2 =−q2 = qqq2−(Eppp′−Eppp)
2 and qqq= ppp′′′− ppp. The

axial form factor at zero momentum transfer corresponds to the axial charge gA and is measured to
a high accuracy in neutron beta decay experiments [1]. Phenomenologically, GA(Q2) is represented
by a dipole as:

GA(Q2) = gA

/(
1+

Q2

M2
A

)2

, 〈r2
A〉=−

6
gA

∂GA(Q2)

∂Q2

∣∣∣∣
Q2=0

, (1.2)

where MA is the axial pole mass, which can be related to the axial radius of the nucleon, rA.
The axial form factor GA(Q2) is experimentally accessible via charged pion electroproduction and
elastic neutrino scattering [2]. The structure of the induced pseudoscalar form factor GP(Q2) is
constrained by chiral symmetry breaking to have a pion pole as:

GP(Q2) = GA(Q2)
4M2

N

Q2 +m2
π

. (1.3)

Experimentally, GP(Q2) is measured in the muon capture process on the proton [2] and is the least
well known of the nucleon form factors.

The lattice calculation of the axial structure observables of the nucleon is pursued by several
groups [3] (and references therein), where the axial charge gA, being a benchmark quantity, is of
central interest. As has been shown in [4–6], the underestimation of gA is attributed to poorly
understood systematic effects. Excited-state contributions to form factors, being one such effect,
are found to be non-trivial [7] and motivates the need for a careful study. Here, we perform an
analysis of the axial form factor with the focus on excited-state contributions. Our simulations use
non-perturbatively O(a) improved Wilson fermions in N f = 2 QCD, generated as part of the CLS
effort with details provided in [6].

2. Lattice systematics

The evaluation of axial matrix elements involves constructing a ratio of three-point and two-
point functions of the nucleon, defined as [8]:

Rγµ γ5(qqq, t, ts)≡
C3,γµ γ5(qqq, t, ts)

C2(0, ts)

√
C2(qqq, ts− t)C2(000, t)C2(000, ts)
C2(000, ts− t)C2(qqq, t)C2(qqq, ts)

. (2.1)

The three-point and two-point functions are computed as follows:

C3(t) = ∑
xxx,yyy

eiqqq·yyy
Γβα〈Nα(xxx)Oγµ γ5(yyy, t)N̄β (0)〉, C2(t) = ∑

xxx
eiqqq·xxx

Γβα〈Nα(xxx)N̄β (0)〉, (2.2)
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where Nα(x) is a nucleon interpolating operator and Γαβ is a projection matrix which projects Nα

to have the correct parity. The polarisation of the nucleon is chosen to be in the z-direction as
Γ = 1

2(1+ γ0)(1+ iγ5γ3). The three-point function represents a nucleon interacting with an axial
current. The relevant diagram is computed by contracting the fixed-sink sequential propagator with
the operator and ordinary propagator. The kinematics is such that the transferred momentum qqq
is injected at the operator while the nucleon at the sink is at rest. To improve the overlap of the
nucleon interpolating operator with the ground state, Gaussian smearing [9] is applied to quark
fields supplemented with APE smeared links [10] at both source and sink.

3. Form factor extraction

The asymptotic behaviour of the three-point and two-point functions yields the ground state
form factors from eq. (2.1) as:

R0
γ0γ5

(qqq, t, ts)−−−→
ts→∞

q3√
2Eq(m+Eq)

(
Gbare

A (Q2)+
m−Eq

2m
Gbare

P (Q2)

)
, (3.1)

R0
γkγ5

(qqq, t, ts)−−−→
ts→∞

i√
2Eq(m+Eq)

(
(m+Eq)Gbare

A (Q2)δ3k−
Gbare

P (Q2)

2m
q3qk

)
. (3.2)

It is clear from eq. (3.2) that the ratio Rγ3γ5 provides direct access to Gbare
A (Q2) at appropriate

kinematics i.e at q3 = 0. Gbare
P (Q2) can also be extracted thereafter from Rγ3γ5 by including the

q3 6= 0 channels. The bare form factors are renormalised as, GX(Q2) = ZA Gbare
X (Q2) 1, where ZA

was determined non-perturbatively in [11]. The ratio as defined in eq. (2.1) contains excited-state
contributions coming from two-point and three-point functions given as:

R(qqq, t, ts) = R0(qqq, t, ts)
(

1+O(e−∆t)+O(e−∆′(ts−t))

)
, (3.3)

where ∆ and ∆′ are the excited-state energy gaps of the initial and final state nucleon. To study the
effects of these contributions systematically, we focus on ensemble ‘N6’, where we have a particu-
larly large data sample at our disposal. On this ensemble, the three-point function is computed for
source-sink separations ranging from ts ∼ 0.6 fm to ts ∼ 1.4 fm with a sample size of Ncfg = 946
gauge configurations. We also employ three different methods to investigate these contributions,
i.e.

1. Fit a plateau for ts ∼ 1.1 fm source-sink separation to a constant.2

2. Construct summed ratios [12, 13] as:

S(ts) =
ts

∑
t=0

R(qqq, t, ts)→ c(∆,∆′)+ ts

(
Gbare

A,P +O(e−∆ts)+O(e−∆′ts)

)
(3.4)

and extract the form factors as the slope of S(ts) for various source-sink separations.

1A mass dependent improvement term is negligible in the mass range considered here.
2For fitting a plateau, the source-sink separation of ts ∼ 1.1 fm is the largest available which yields meaningful

uncertainties on the fit. Data on ts > 1.1 fm is not considered as the uncertainties are higher.
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Figure 1: Left: Comparison of results of two-state fits (overlapping green band) with summation method
(red band) and plateau fit (blue band). Right: A two-state fit to gA.

3. Perform simultaneous two-state fits, where one makes an explicit ansatz about the nature of
the energy gaps of excited-states and the data is fitted to the following:

Rγ3γ5(Q
2, t, ts) = Gbare

X (Q2)+ c1e−∆t + c2e−∆′(ts−t), (3.5)

Rγ3γ5(Q
2 = 0, ts) = gbare

A + c1e−∆ts/2. (3.6)

The two-state fit for the axial charge simplifies at Q2 = 0, as one has ∆′ = ∆ and the t dependence
of gbare

A is eliminated by averaging over five time slices around t = ts/2. 3

4. Analysis of the axial form factor GA(Q2)

The results for the axial charge, as presented in [6], are summarised in left panel of Fig 1.
It is clear that the results of the plateau and summation method fits do not mutually agree. In
order to obtain a deeper insight, we also include data with ts ≥ 1.1 fm and fit plateaus to each
of the source-sink separations. The results are plotted as a function of ts/2 as shown in the right
panel of Fig 1. We then fit this data with a two-state fit as in eq. (3.6) with the gap fixed to
∆ = 2mπ . The comparison of the results is presented in the left panel of Fig 1, and the two-state
fit (overlapping green band) agrees well with the summation method indicating that the summation
method correctly takes into account the excited-state contributions. Furthermore, it does so without
making any assumption about the nature of gaps.

The results at the lowest non-zero Q2 are presented in Fig 2. As can be seen, even though the
results for plateau, summation and two-state fits overlap, the absence of a plateau-like behaviour
for ts ∼ 0.6−0.8 fm (red and green data points) is a clear indication that the ground-state has not
been reached. Further, for source-sink separations of 1.1 fm (blue data points), the uncertainties are
high enough, that it is difficult to determine the extent of the excited-state contributions. It is also
noted that at the lowest non-zero Q2, the available degenerate momentum channels are lowest and

3For source-sink separations that are odd in lattice units, plateaus are fitted to data at
(
(ts−1)/2±2

)
.
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Figure 2: Results at lowest non-zero Q2. Plateau fit with blue band, summation method with red band and
two-state fit with green band.
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Figure 3: Results at Q2 = 0.7 GeV2. Left: Results with inclusion of lowest ts. Right: Results with
elimination of lowest ts. Colour scheme for bands is same as in Fig 2.

therefore the gain in statistics is less compared to higher momentum channels. Hence, we believe
that the excited-state contributions can be more clearly exposed with improved statistics.

At higher Q2, the excited-state contributions are obvious from the data, as is shown in Fig 3.
The summation method fit, left Fig 3, seems to describe the data well, however we note that data
at the lowest ts, being more accurate, dominates the fit. This is observed in the right panel of
Fig 3, where after eliminating the lowest ts, the summation method results exhibit a downward
trend (albeit with higher uncertainties) more inline with the two-state fits. The results of various
fits at all Q2 is summarised in the left panel of Fig 5.

5. Induced pseudoscalar form factor GP(Q2)

The analysis of GP(Q2) is more complicated than GA(Q2), because with our kinematic setup
we cannot directly access GP(Q2). The data for GP(Q2) is obtained from Rγ3γ5 for the kinematics

5
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Figure 4: Results for GP(Q2) at lowest non-zero Q2. Colour scheme for bands is same as in Fig 2.
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Figure 5: Left: Results of various fits for GA(Q2) Right: Results of various fits for GP(Q2)

with q3 6= 0 which presumes the knowledge of GA(Q2). In the results presented, the data for GP(Q2)

were obtained by subtracting the data for GA(Q2) from Rγ3γ5 .The results for GP(Q2) are presented
in Fig 4 and in the right panel of Fig 5. At the lowest non-zero Q2, the results for the various fits
methods do not agree, indicating non-trivial excited-state contributions. At this point, we note that
the excited-state contributions coming from GA(Q2) are not accounted for, which motivates us to
perform a more thorough analysis for GP(Q2). We also verify the presence of the pion pole, by
fitting the data for each method to the ansatz in eq. (1.3). We emphasise that the results presented
are preliminary and a more detailed analysis will be presented in a later publication.

6. Conclusions and outlook

We have presented preliminary results for the axial form factor GA(Q2) and induced pseu-
doscalar form factor GP(Q2). We find that for the case of axial charge, naive plateau fits underes-
timate the excited-state contributions and that the summation method correctly accounts for these
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effects without making any assumption about the nature of gaps. At non-zero momenta, we ob-
serve that the data at lowest ts is responsible for underestimating the excited-state contributions.
Therefore, to obtain a more correct estimate, we typically discard the data at the lowest ts. We
note that in all cases the two-state fits are used only as a tool to get an insight in the behaviour of
excited-states, due to the fact that assumptions are made about the nature of the gaps.

There are several avenues that are currently being explored, which will be discussed in a later
publication. In extracting GP(Q2), the excited-state contributions coming from GA(Q2) can be
avoided by estimating the combined matrix elements from Rγ3γ5 directly from one of the three fit-
ting methods. Our results presented here were obtained using the unimproved axial current and
can be O(a) improved, as the relevant coeffcients are known non-perturbatively. The pseudoscalar
form factor is related to axial form factors through the PCAC relation and allows us to study the
Goldberger-Treiman relation. The chiral and continuum extrapolation of the axial radius rA ob-
tained from GA(Q2) also remains to be explored and will be presented in detail in a later publication.
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