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We present a detailed analysis of statistical and systematic errors in the calculation of matrix
elements of iso-vector scalar, axial and tensor charges between a neutron and a proton state.
These analyses are being done on dynamical N f = 2+ 1+ 1 HISQ configurations generated by
the MILC Collaboration using valence clover fermions. Using ensembles at three values of the
lattice spacing (a = 0.12, 0.09, and 0.06 fm) and three values of the quark mass (Mπ ≈ 310, 220
and 130 MeV) we find that the estimates of the tensor charge are stable and it can be extracted
with 5% precision with O(10,000) measurements. We also find that higher statistics are needed to
resolve the various uncertainties in the calculation of gA and improve the signal in gS, which with
present data has large errors. A brief status report on the mixing and renormalization of novel
operators contributing to nEDM is also given.
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1. Introduction

Precise calculations of the matrix elements of iso-scalar and iso-vector bilinear quark opera-
tors within nucleon states are needed to probe many exciting areas of the Standard Model (SM)
and its extensions. In Ref. [1], we showed that new scalar and tensor interactions at the TeV scale
could give rise to corrections at the 10−3 level in precision measurements of the helicity flip parts
of the decay distribution of (ultra)cold neutrons (UCN). This sensitivity is reachable in experi-
ments currently under construction and being planned. Even if these experiments see a signal, to
constrain the allowed parameter space of beyond the SM (BSM) models, however, requires that
matrix elements of isovector scalar and tensor bilinear quark operators are known to 10–20% ac-
curacy. Similarly, in Ref. [2], we showed that to probe novel sources of CP violation in neutron
electric dipole moment (nEDM), a combination of matrix elements of the iso-scalar and iso-vector
tensor operators are needed to estimate the contribution of the quark EDM to the nEDM. Lattice
calculations are well poised to provide these estimates with the desired precision.

In these proceedings, we present a detailed analysis of statistical and systematic errors in
such calculations using 9 ensembles of 2+1+1 flavor HISQ lattices generated by the MILC col-
laboration [3]. The matrix elements are calculated using clover valence quarks. We examine the
following sources of systematic errors – contribution of excited states, estimates of renormalization
constants, finite volume and lattice discretization effects and dependence on quark mass. Three of
these sources, statistics, contribution of excited states, and renormalization constants, affect the
precision with which estimates from an individual ensemble are extracted. The other three, finite
volume and lattice discretization effects and dependence on quark mass, require fits and extrapola-
tions based on all the points. We examine the two classes of uncertainties separately.

2. Statistics

The MILC Collaboration [3] has generated ensembles of roughly 5500 trajectories of 2+1+1-
flavor HISQ lattices at three values of light quark masses corresponding to Mπ ≈ 310, 220, 130
MeV at a = 0.12, 0.09 and 0.06 fm. We analyze configurations separated by 4–6 trajectories of the
hybrid Monte Carlo evolution and discard the initial 300–500 trajectories for thermalization. The
status of our analyses using these ensembles are summarized in Table 1. To increase the statistics,
each configuration is analyzed using gaussian smeared sources in multiple locations displaced both
in time and space directions to reduce correlations.

We performed the following statistical tests. The data for a given ensemble are divided into
bins (by source point and configurations) and the Kolmogorov–Smirnov test is performed on quan-
tities that have reasonable estimates configuration by configurations (iso-vector vector charge,
value of 2-point function at a given time separation). While, this pairwise test showed that the
sub-samples are consistent with being drawn from the same distribution, the mean values of ob-
servables fluctuated by up to 3σ . This variation is much larger than expected based on our bin size
of over 1000 measurements. We do not find long tails in the distributions for any of the samples
that could explain the fluctuation, but do see a variation in the sample distribution. One possible
explanation is that the ensembles have not covered enough phase space and errors are consequently
underestimated. Our overall conclusion is that a few thousand, and possibly O(10,000) for the
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Label L3×T Mπ MeV (MπL) Ncfgs NMeasurements tsep

a12m310 243×64 305.3(4) 4.54 1013 8104 8, 9, 10, 11, 12
a12m220S 243×64 218.1(4) 3.22 1000 24K (12K) 10 (8, 12)
a12m220 323×64 216.9(2) 4.3 958 7664 8, 10, 12

a12m220L 403×64 217.0(2) 5.36 1010 8080 10
a09m310 323×96 312.7(6) 4.5 881 7058 10, 12, 14
a09m220 483×96 220.3(2) 4.71 890 7120 10, 12, 14
a09m130 643×96 128.2(1) 3.66 883 4824 10, 12, 14
a06m310 483×144 319.3(5) 4.51 865 3460 16, 20
a06m220 643×144 229.2(4) 4.25 430 1320 16, 20, 22, 24

Table 1: Description of the nine ensembles at a = 0.12, 0.09, 0.06 fm used in this study.

scalar charge, independent configurations with O(32) measurements on each are needed to obtain
estimates with ≤ 2% errors.

3. Excited-State Contamination

Our current data show significant excited state contamination in both 2-point and 3-point func-
tions. The goal is to extract all observables (charges, charge radii, form factors) by calculating
matrix elements between ground-state nucleons. We address this by using smeared operators tuned
to increase coupling to the ground state and suppress radially excited states. Second, as discussed
in [4], we partially remove the remaining contamination by including one excited state in the anal-
ysis. Higher states are not included because with current statistics we are not able to resolve them,
especially in the 3-point functions.

Denoting the first excited state mass by M1 and coupling to our operator by A1, the three-point
function with source at ti = 0, operator insertion at t = t and sink at t f = tsep can be written as

C
(3),T
Γ

(ti, t, t f ;~pi,~p f )≈ |A0|2〈0|OΓ|0〉e−M0(t f−ti) + |A1|2〈1|OΓ|1〉e−M1(t f−ti)

+ A0A
∗

1 〈0|OΓ|1〉e−M0(t−ti)e−M1(t f−t)+

+ A ∗
0 A1〈1|OΓ|0〉e−M1(t−ti)e−M0(t f−t) . (3.1)

The masses and amplitudes M0, M1, A0, and A1 are obtained from fits to the two-point functions.
The desired matrix element 〈0|OΓ|0〉 is then obtained by isolating 〈0|OΓ|1〉 and 〈1|OΓ|1〉. This
requires doing calculations with multiple values of t and tsep. Using the sequential source method,
we carry out operator insertion at all values of t between the source and sink timeslices. The values
of tsep investigated are listed in Table 1. A nonlinear least-square fitter is then used to extract
〈0|OΓ|0〉 by fitting the data for all tsep simultaneously using Eq. (3.1).

The a = 0.12 data for all three charges do not exhibit significant trends with respect to tsep [4].
Simultaneous fits to tsep = 8, 10 and 12 data are consistent with a fit to just the tsep = 10 data.
Consequently, in [4] we had concluded that tsep ≥ 1.2 fm is needed to control excited state con-
tamination. The a = 0.09 and 0.06 data are much cleaner and show an increase in gA with tsep as
illustrated in Fig. 1. On the other hand gT continues to show very little senstivity to tsep. The errors
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Figure 1: Fit using Eq.(3.1) to extract unrenormalized gA,S,T from the a09m220 ensemble data. The black
line and the grey error band are the result of the simultaneous fit to the tsep = 10, 12 and 14 data. The 3 colored
lines are obtained from the simultaneous fit evaluated for each tsep. To reduce excited-state contamination,
the grey points on either side that are close to the source/sink timeslice, are not included in the fit.

1.15

1.20

1.25

1.30

1.35

-4 -3 -2 -1  0  1  2  3  4

g
A

t - tsep/2

tsep=10

 a12m220S
 a12m220
 a12m220L

1.04

1.08

1.12

1.16

1.20

1.24

-4 -3 -2 -1  0  1  2  3  4

g
T

t - tsep/2

tsep=10

 a12m220S
 a12m220
 a12m220L

0.3

0.6

0.9

1.2

1.5

1.8

-4 -3 -2 -1  0  1  2  3  4
g

S
t - tsep/2

tsep=10

 a12m220S
 a12m220
 a12m220L

Figure 2: Study of finite volume effects in unrenormalized gA,S,T using fits to Eq.(3.1) on the tsep = 10 data
from the three a12m220 ensembles. Rest is same as in Fig. 1.

in gS are too large to draw conclusions. Overall, trends in gA data at weaker couplings imply that
tsep ≥ 1.5fm is needed to establish control over excited state contamination.

Our fits are biased by the smallest tsep data because the statistics are the same for all tsep, while
errors increase with tsep. For example, on the a = 0.12fm ensembles, the statistical errors increase
by about 40% with each unit increase in tsep. This estimate scales with a, i.e., on the a = 0.06fm
ensembles, the same fractional increase takes place every 2 units. Similarly, the errors increase
by about 20% on lowering the light (u and d) quark masses by a factor of two, i.e., going from
Mπ = 310 to 220 MeV ensembles. As an illustration, consider fits to a = 0.09fm ensembles with
tsep = 10, 12, 14 shown in Fig. 1. The tsep = 10 data make the largest contribution to the extraction
of 〈0|OΓ|0〉 and 〈0|OΓ|1〉. The change between tsep = 10 and 12 contributes to fixing 〈1|OΓ|1〉. For
tsep = 14 data to contribute at the same level, its statistics should be 3–4 times that of tsep = 10 data.

4. Finite Volume Effects

The results of our finite volume study using the a12m220 ensembles with volumes 243, 323 and
403 (corresponding MπL = 3.22, 4.3 and 5.36) are shown in Fig. 2. The gA data show significant
increase with volume, while the gT data show saturation between the MπL = 4.3 and 5.36 data.
The gS data are again too noisy. Our conclusion is that lattices with MπL≥ 5 are needed to control
finite volume effects unless we can reliably model extrapolation in lattice volume.
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5. Non-perturbative Renormalization

We use the RI-sMOM scheme to calculate the renormalization constants of the bilinear quark
operators [5]. Details of the method and our implementation were presented in [4]. The most im-
portant issue, especially when using smeared lattices, was demonstrating the presence of a window
in momentum q, ΛQCD� q� c/a with c an a priori unknown number of O(1), where lattice arti-
facts are expected to be small. Sufficiently close to the continuum limit where perturbation theory
works, a test of whether such a window exists is that ZS and ZT in the RI-sMOM (or any lattice)
scheme should show a q2 dependence given by the anomalous dimensions of these operators along
with a weaker dependence from the running of αs, while ZA should only show the latter. Con-
verting estimates obtained from within such a window in q2 in the RI-sMOM scheme to the MS
scheme used in pehnomenology and run to some fixed scale, say µ = 2 GeV, should give estimates
independent of q2. Based on our analyses at the three lattice spacings (see [4] for details) our con-
clusions are: there is evidence of such behavior, i.e., a window, in ZA and ZT , but not in ZS even
on a = 0.06 fm ensembles. Lacking a convincing demonstration of a window, we have defined
a procedure that will extrapolate to the right continuum limit [4] and have been conservative in
estimating errors, however, we recommend a further study at various a, in particular for ZS.

6. Combined fits in lattice volume, spacing and quark mass

Having discussed the first class of uncertainties that affect individual data points, we now
discuss extrapolations in lattice spacing and volume, and the quark mass. It is very hard to generate
dynamical lattices with fixed quark masses (fixed Mπ ) and lattice volumes (fixed MπL) at multiple a
in order to take the continuum limit along a line of constant physics. Similarly, it is not easy to hold
the lattice volume and a constant and vary the quark mass to study the chiral behavior. Our best
option is to do a combined fit in a, Mπ and MπL to obtain physical estimates. The second challenge
is choosing the extrapolation ansatz in each of these three variables — we have to compromise
between the number of free parameters included and the number and quality of data points. In
Fig. 3 we show such a fit keeping only the leading order terms in each of the three variables,

g(a,Mπ ,MπL) = gphysical +αa+βM2
π + γe−Mπ L . (6.1)

In Fig. 3, note that the errors in individual points vary significantly. As a result, with 9 data points,
this ansatz with 4 free parameters is the most extensive we can explore.

Fig. 3 summarizes the trends mentioned before. Removing excited state contributions and
doing finite volume and chiral extrapolations all increase gA towards the experimental value. Data
for gT show almost no dependence on a, Mπ or MπL and give gT = 1.06(0.06). We consider this
estimate reliable. Statistical errors are too large to draw conclusions about gS.

Prognosis for the future: Based on current analyses, we conclude that with current ensembles
and O(10,000) measurements, we can extract gT with about 2% errors on each point, and ≈ 5%
uncertainty in the extrapolated value. To extract gA with similar precision will require O(2000)
configurations at three values of a≤ 0.1fm, MπL≥ 5 and O(24) measurements on each configura-
tion to get statistically significant data for 1.2≤ tsep≤ 1.6fm. Estimates of gS with similar precision
will require an order of magnitude more measurements.
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Figure 3: Results of combined fits in a, Mπ and Mπ L to obtain the physical results for the renormalized
charges using the ansatz given in Eq. (6.1). Iso-vector charges are labeled as gu−d .

7. BSM contributions to Neutron Electric Dipole Moment

Lattice calculations of matrix elements of effective quark EDM and chromo EDM operators
within a neutron state to proble BSM theories were initiated in [2]. The simpler is the quark EDM
which is an extension of gT but matrix elements of both isovector and isoscalar tensor operators
are need. One, therefore, has to evaluate and control the signal in the disconnected diagrams [6].
We also analyze operator mixing and renormalization in 1-loop perturbation theory. For brevity,
operators that vanish by the equations of motion are included by introducing the field combinations:

ψE ≡ (iDµ
γµ −m)ψ , Dµ = ∂µ − igAa

µT a− ieψA(γ)
µ (7.1)

ψ̄E ≡ −ψ̄ (i
←−
D µ

γµ +m) ,
←−
D µ =

←−
∂ µ + igAa

µT a + ieψA(γ)
µ . (7.2)

In terms of these fields, the operators we study are given in Table. 2. The pattern of mixing of the
dimension 5 operators under renormalization that needs to be calculated is given in Table 3. Papers
containing 1-loop results for the mixing and a first estimate of the quark EDM are being prepared.
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O(3) = iP = ψ̄iγ5ψ O(5)
1 =C = ig

2 ψ̄ (σ µνγ5 + γ5σ µν)Gµνψ

O(5)
2 = i∂ 2P

O(5)
3 = E = ie

2 ψ̄ (σ µνγ5 + γ5σ µν)Fµνψ

O(4)
1 = GG̃ = 1

2 εµναβ Ga
µνGa

αβ
O(5)

4 = mFF̃

O(4)
2 = ∂ ·A = ∂µ(ψ̄γµγ5ψ) O(5)

5 = mGG̃
O(4)

3 = imP = mψ̄iγ5ψ O(5)
6 = m∂ ·A

O(4)
4 = FF̃ = 1

2 εµναβ FµνFαβ O(5)
7 = m2 iP

O(5)
8 = iPEE = iψ̄Eγ5ψE

O(5)
9 = ∂ ·AE = ∂µ [ψ̄Eγµγ5ψ + ψ̄γµγ5ψE ]

O(5)
10 = A∂ = ψ̄γ5 /∂ψE − ψ̄E

←−
/∂ γ5ψ

O(5)
11 = AA(γ) = ie

(
ψ̄ /A(γ)

γ5ψE − ψ̄E /A
(γ)

γ5ψ

)
Table 2: Operators of dimension 3, 4 and 5 needed in the nEDM calculation.

C ∂ 2P E mFF̃ mGG̃ m∂ ·A m2P PEE ∂ ·AE A∂ AA(γ)

C ZC X X X X X X X X X X
∂ 2P 0 ZP 0 0 0 0 0 0 0 0 0

E 0 0 ZT 0 0 0 0 0 0 0 0

mFF̃ 0 0 0 Z−1
m ZFF̃ 0 0 0 0 0 0 0

mGG̃ 0 0 0 0 Z−1
m ZGG̃ X 0 0 0 0 0

m∂ ·A 0 0 0 0 0 Z−1
m Z∂A 0 0 0 0 0

m2P 0 0 0 0 0 0 Z−1
m 0 0 0 0

PEE 0 0 0 0 0 0 0 X X X 0

∂ ·AE 0 0 0 0 0 0 0 0 X 0 0

A∂ 0 0 0 0 0 0 0 X X X 0

AA(γ) 0 0 0 0 0 0 0 0 0 0 X

Table 3: Mixing due to QCD of the dimension-5 operators. Non-zero entries need to be determined.
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