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Knowledge of the electric polarizability is crucial to understanding the interactions of hadrons
with electromagnetic fields. The neutron polarizability is very sensitive to the quark mass and is
expected to diverge in the chiral limit. Here we present results for the electric polarizability of the
neutron, neutral pion, and neutral kaon on eight ensembles with nHYP-smeared clover dynamical
fermions with two different pion masses (227 and 306 MeV). These are currently the lightest pion
masses used in polarizability studies. For each pion mass we compute the polarizability at four
different volumes and perform an infinite volume extrapolation for the three hadrons. Along with
the infinite volume extrapolation we conduct a chiral extrapolation for the kaon polarizability to
the physical point. We compare our results for the neutron polarizability to predictions from chiral
perturbation theory.
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1. Introduction

To lowest order, the response of a composite particle to an electromagnetic field can be param-
eterized by the effective Hamiltonian:

Hem =−~p · ~E −~µ ·~B− 1
2
(
αE 2 +βB2)+ ..., (1.1)

where ~p and ~µ are the electric and magnetic dipole moments, respectively, and α and β are the
electric and magnetic polarizabilities. Due to time-reversal symmetry of the strong interaction
the electric dipole moment vanishes. Furthermore, by considering the simplified case of a weak
constant electric field, the leading order interaction comes from the polarizability term at O(E 2).
The polarizability is a first-order structure constant which measures the rigidity of the hadron in
the presence of the external field.

In this work, we use lattice QCD to compute the electric polarizability (α). We employ the
background field method to extract the polarizability. Previous lattice calculations [1, 2, 3, 4, 5, 6]
were done at relatively heavy pion masses leaving the chiral region largely unexplored. Here, we
use 2-flavor n-HYP clover fermions with two different pion masses (227 MeV and 306 MeV) to
study the chiral behavior of the polarizability. Moreover, for each mass we compute α on four
different lattice volumes to study the volume dependence.

We analyze three neutral hadrons: neutral pion, neutral kaon, and the neutron. For each hadron
we performed an infinite volume extrapolation. For the kaon, we also performed a chiral extrapola-
tion to the physical point. The results of our neutron polarizability, will be compared to predictions
from chiral perturbation theory. We note that our work, though done on dynamical configurations,
uses electrically-neutral sea quarks throughout.

The outline of the paper is as follows: In section 2 we discuss the lattice methodology to
extract the polarizability and our fitting procedure. In section 3 we present our results for the
neutron, neutral pion and neutral kaon polarizability. We then summarize and present an outlook
in section 4.

2. Methodology

2.1 Background field method

We use the background field method to place the electric field on the lattice. The method uses
minimal coupling which augments the static electromagnetic vector potential (Aµ ) to the covariant
derivative, i.e.

Dµ = ∂µ − igGµ − iqAµ , (2.1)

where Gµ are the gluon field degrees of freedom. In practice, this amounts to an overall multiplica-
tive phase factor to the original gauge links which appear in Dµ :

Uµ → e−iqaAµUµ . (2.2)

The polarizability is extracted by computing the variation of the hadron’s ground state energy with
and without the presence of an electric field.
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In order to extract the polarizability we need to use a weak enough electric field so that higher
order terms in the field expansion can be safely neglected. In this work we instead use Dirichlet
boundary conditions (DBC). The advantage of this is that we can use arbitrarily small values of
the field. DBC also protects against the vacuum instability due to the Schwinger mechanism [7].1

However, using DBC creates boundary effects. One of them is the introduction of a non-zero
momentum for the hadron of magnitude π/L. The lowest energy state of the system is then E =√

m2 +(π/L)2, where m is the mass of the hadron. To account for this motion we compute the
mass shift (δm) motion due to the polarizability using the relation

δm = δE
E
m
. (2.3)

The hadron’s mass (m) is computed using periodic boundary conditions.

2.2 Fitting Procedure

The form of the correlators, for neutral hadrons in an constant electric field, retain their ex-
ponential fall off, allowing us to use some of the standard spectroscopy techniques to measure the
shift in hadrons’ energies.

The main difference in the fitting analysis is the fact that we need to extract the energy shift
from the three correlation functions: G0,G+η , and G−η , which are the correlation functions for
the zero-field, and non-zero fields in the positive and negative x-direction, respectively. Since all
three correlators are computed from the set of gauge configurations they are highly correlated; we
therefore need to properly account for the correlations among them. To do this we construct the
following difference vector as

vi ≡ f (ti)−〈G0(ti)〉, (2.4)

vN+i ≡ f̄ (ti)−〈G+E (ti)〉,
v2N+i ≡ f̄ (ti)−〈G−E (ti)〉 for i = 1, ...,N

where t1...tN is the fit window, f (t) = A e−Et and f̄ (t) = (A+δA) e−(E+δE)t . We minimize the χ2

function,
χ

2 = v† C−1 v,

in the usual fashion, where C is the 3N × 3N correlation matrix which encodes the correlations
among the three different correlators.

3. Ensemble Details and Results

In this work we use 2-flavor nHYP-clover fermions [8] with two different pion masses (227
MeV and 306 MeV) in order to study the chiral behavior of the polarizability. For each pion mass
we compute α on four different volumes in order to study the volume effects of the polarizability.

1This instability only occurs for real electric fields and not for imaginary electric fields as used in most lattice
studies. However, to use imaginary fields we need to rely on the analyticity of the theory around the point where the
electric field is zero. Schwinger mechanism signals that this is not an analytical point generically. DBC offers one way
to restore this analyticity.
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Ensemble Lattice a (fm) κ Nc

EN1 16×162×32 0.1245 0.12820 230
EN2 24×242×48 0.1245 0.12820 300
EN3 30×242×48 0.1245 0.12820 300
EN4 48×242×48 0.1245 0.12820 270

EN5 16×162×32 0.1215 0.12838 230
EN6 24×242×64 0.1215 0.12838 450
EN7 28×242×64 0.1215 0.12838 670
EN8 32×242×64 0.1215 0.12838 500

Table 1: Details of the lattice ensembles used in this work. Nc is the number of configurations. The
separation between the top four ensembles and bottom four ensembles is used to indicate the two different
sea quark masses more clearly.
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Figure 1: Top: Neutral pion polarizability as a function of 1/L. The right panel are our results for the
306 MeV ensemble and the left panel corresponds to the 227 MeV ensemble. On each plot we overlay our
infinite volume extrapolations using a constant (red-solid line) and linear (orange-dash line) fit. Bottom :
Same as top graphs but for the neutral kaon.

A description of the ensembles are tabulated in Table 1. In our simulations we use a field size of
η ≡ a2qdE = 10−4, where qd is the charge of the down quark. For a detailed discussion for the
choice of η we refer the reader to our previous work [9].

3.1 Finite Volume Effects

The polarizabilities for the neutral pion, neutral kaon, and neutron were extracted for each
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Figure 2: Top: Infinite volume extrapolation for the neutron polarizability. Bottom: Comparison of the EN2
ensemble to the results of the EN4 ensemble with the electric field in the x direction and with the electric
field in the y direction. See text for details.

ensemble using the fitting procedure described in Sec. 2.2. For a given pion mass we studied the
infinite volume behavior of the polarizability by extrapolating to the infinite volume limit using
various polynomial degrees as fit models. We found, for the pion, that a constant extrapolation
describes the data well. For the neutron and kaon we used a linear approximation. Figures 1 and 2
illustrate the results of the infinite volume extrapolation for both pion masses.

The volume dependence analysis assumes that the finite size corrections are mainly driven by
the extent of the lattice in the direction of the electric field (which is in x-direction for this work). To
verify this, we take our EN4 lattice which has the spatial dimension 48×242 and place the electric
field along the y-direction which has only 24 lattice units. We choose this ensemble because the
difference in the x and y directions are the largest which gives us the best comparison. If the finite
volume corrections associated with the transverse directions are small, we expect our results to
be comparable to the results of the EN2 ensemble which has the spatial dimension 24× 242. We
display our results on the bottom panel of Fig. 2 for the EN2 lattice and the EN4 lattice for the
electric field in the x direction and the electric field in the y direction. Our expectations are in very
good agreement with our findings. That is, we found that dominant source of the finite size effects
are connected to the extent of the lattice in the direction of the field.

3.2 Chiral Behavior

In this section we analyze the pion mass behavior for each of the particles we analyzed. On
the left panel of Fig. 3 we plot our infinite volume extrapolation results for the pion polarizability
as a function of mπ . We also include the values calculated by Detmold et al. [3] at mπ = 390 MeV
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Figure 3: Left panel: Pion mass dependence of the pion polarizability. The orange/circle points are
quenched results found in [10] and the blue/triangle point is the value determined in [3]. Right panel:
Pion mass dependence for the kaon polarizability along with a chiral fit which includes the value determined
in [3]

along with quenched results calculated by Alexandru and Lee [10]. The negative trend, which has
been seen in our previous work [11], is still present; determining its origin is an ongoing study.

Our results for the kaon polarizability is illustrated on the right panel of Fig. 3. The plot also
includes the value determined by Detmold et al. [3]. The kaon polarizability becomes larger as we
lower the pion mass. In our previous work [9] we performed an extrapolation to the physical point
using only the EN2 and EN6 lattices. We had found αK = 0.269(43)×10−4fm3. Here we do the
same analysis but now using our infinite volume results together with the value determined in [3].
We find αK = 0.355(70)× 10−4 fm3. In this fit we assumed that the finite volume corrections at
mπ = 390 MeV are small since they seem to decrease as we increase the pion mass.

On the left panel of Fig. 4 we plot our infinite volume results for the neutron polarizability as
a function of mπ along with quenched data that were computed in [10]. We also compare our data
to two different χPT predictions: χPT1 [12, 13] and χPT2 [14] to gauge systematic errors of our
calculation. For a more detailed comparison of the two χPT predictions we refer the reader to [9].

Similar to our findings in [9], which only analyzed the EN2 and EN6 ensembles, we find that
our infinite volume results are compatible with the quenched ones. Moreover, our results are now
in excellent agreement with the χPT1 curve. This was not the case for our previous analysis which
did not take into account the volume effects. In Fig. 4 we add the experimental point along with
two other lattice calculations [2, 1] for the neutron polarizability. Our results have the smallest pion
masses used in polarizability studies and the smallest statistical errors.

4. Conclusion

We have presented a calculation of the electric polarizabilities for the neutron, neutral pion, and
neutral kaon in the framework of lattice QCD. We used two different pion masses (227 MeV and
306 MeV) to study the chiral behavior of the polarizability. Currently, these are the smallest masses
used in polarizability studies. We employed the background field method along with Dirichlet
boundary conditions to place a constant electric field onto the lattice. A finite volume study was
performed for each pion mass by computing the polarizability on four different lattice volumes.
This was one of the most important results in this work. For the neutron we find that the finite
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Figure 4: Left panel: Pion mass dependence of the neutron polarizability. The orange/circle points are
quenched results found in [10]. The dashed lines are two different curves predicted by χPT1 [12, 13]
and χPT2 [14]. Right panel: Plot of our results along with the experimental value and two other lattice
calculations [1] and [2].

volume corrections are significant. Without the infinite volume extrapolation our results did not
agree with χPT calculations at our lowest pion mass where χPT is expected to be more accurate.
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