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When a subgroup of the flavor symmetry group of a gauge theory is weakly coupled to addi-
tional gauge fields, the vacuum tends to align such that the gauged subgroup is unbroken. At the
same time, the lattice discretization typically breaks the flavor symmetry explicitly, and can give
rise to new lattice-artifact phases with spontaneously broken symmetries. We discuss the inter-
play of these two phenomena, using chiral lagrangian techniques. Our first example is two-flavor
Wilson QCD coupled to electromagnetism. We also consider examples of theories with stag-
gered fermions, and demonstrate that recent claims in the literature based on the use of staggered
fermions are incorrect.
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1. Overview

In two recent articles, we considered the question of what happens if, in a strongly-coupled,
vector-like lattice gauge theory with a global flavor symmetry, a subgroup of this flavor symmetry
is weakly gauged [1, 2]. We consider the flavor gauge coupling to be “weak” if it is small at the
scale of the strongly-coupled theory. In the continuum limit of such theories, the vacuum tends to
align such that the weakly gauged subgroup remains unbroken [3]. However, on the lattice, even
without gauging any of the flavor symmetries, it may happen that flavor symmetries are explicitly
and/or spontaneously broken because of lattice artifacts. It follows that in lattice gauge theories
with weakly gauged flavor symmetries, there may be a competition between vacuum alignment
and lattice-induced symmetry breaking, and it is interesting to consider in more detail how this
competition plays out.

Here we consider this question for two examples, the first being QCD with two flavors of
Wilson fermions, and the second QCD with two flavors of (unrooted) staggered fermions. For
other examples, we refer to Refs. [1, 2]. The upshot is that indeed lattice artifacts can change the
continuum phase diagram in a non-trivial way, as we will see in the examples below. We will
begin with a quick review of two-flavor QCD coupled to isospin gauge fields in the continuum. We
then consider lattice QCD with two flavors of Wilson fermions in Sec. 3, and with two flavors of
staggered fermions in Sec. 4, after which we conclude in the final section.

2. Continuum case

The low-energy effective potential for two-flavor QCD with degenerate quark masses is given
by

Veff = −
c1

4
tr(Σ+Σ

†) , (2.1)

Σ = σ + i~τ ·~π , σ
2 +~π2 = 1 ,

in which the constant c1 is proportional to the quark mass, and Σ is the usual SU(2)-valued non-
linear pion field. Instead of using the standard exponential form for Σ, we employ the parametriza-
tion shown in Eq. (2.1), as it is more convenient in the case of SU(2). We may gauge isospin (or
a subgroup thereof) by considering the kinetic term of the effective lagrangian, and replacing the
derivatives by covariant derivatives,

f 2

8
tr(∂µΣ∂µΣ

†)→ f 2

8
tr(DµΣ(DµΣ)†) , (2.2)

with the covariant derivative

DµΣ = ∂µΣ+ ig[Vµ ,Σ] , Vµ =~Vµ ·~τ/2 , (2.3)

with Vµ the isospin gauge field. From Eq. (2.2) one then reads off the non-derivative part

g2 f 2

4
tr(V 2

µ −VµΣVµΣ
†) , (2.4)
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and, integrating over Vµ , this leads to an addition to the effective potential

∆Veff =−
g2c3

8 ∑
a

tr(τaΣτaΣ
†) =−g2c3σ , (2.5)

to lowest non-trivial order in the weak coupling g. We may also consider the case that we couple
only a U(1) subgroup of isospin SU(2). Setting V 1

µ = V 2
µ = 0, i.e., taking this U(1) in the τ3

direction, one finds that

Veff +∆Veff = −
c1

4
tr(Σ+Σ

†)− e2c3

8
tr(τ3Στ3Σ

†) (2.6)

= constant+
1
2

c1~π
2 + e2c3 π

+
π
−+ . . . .

We thus rederive the ancient result [4]

m2
π+−m2

π0 = e2c3/ f 2 , (2.7)

in which we have that c3 > 0 [5]. We note that in both cases gauging (a subgroup of) the isospin
group stabilizes the vacuum, because c3 is positive. This is an example of vacuum alignment [3].

3. Wilson fermions

In the regime in which m/ΛQCD ∼ a2Λ2
QCD, the leading-order effective potential for QCD with

two flavors of Wilson fermion is [6]

Veff = −
c1

4
tr(Σ+Σ

†)+
c2

16
(
tr(Σ+Σ

†)
)2

(3.1)

= −c1σ + c2σ
2 ,

where c1 ∝ m as before,1 and c2 ∝ a2, with a the lattice spacing.
If c2 < 0, then 〈σ〉 = ±1, depending on the sign of c1. There is a first-order phase transition

at c1 = 0, and isospin is always unbroken. In this case, the minimal value of the pion mass is
proportional to |c2|; no pion is ever massless as long as the lattice spacing a > 0.

If c2 > 0, one finds that the effective potential is minimized at

〈σ〉=


1 , c1 ≥ 2c2 ,
c1
2c2

, −2c2 < c1 < 2c2 ,

−1 , c1 ≤−2c2 .

(3.2)

There is a second-order phase transition at |c1| = 2c2, and for |c1| < 2c2 we find that |〈σ〉| < 1,
which implies that 〈~π〉 6= 0. SU(2) isospin is spontaneously broken to a U(1) subgroup, parity
is spontanteously broken, and two of the three pions become massless as the Nambu–Goldstone
bosons associated with this symmetry breaking. This region in the phase diagram is the Aoki phase

1The term of order a in the effective potential can be, and thus has been, absorbed into m. For details on how this
works, see Ref. [6].
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[7]. We note that the effect on pion masses is opposite to the effect of coupling QCD to QED, with
the neutral pion being heavier than the charged pion inside the Aoki phase!2

We may now consider the combined effect of the lattice and QED, which is relevant in the case
that c1 ∼ c2 ∼ g2c3, or m/ΛQCD ∼ a2Λ2

QCD ∼ g2 ∼ e2. If we gauge the complete isospin group, the
effective potential is

Veff +∆Veff =−c1σ +(c2−g2c3)σ
2 . (3.3)

The only change in comparison with Eq. (3.1) is that the low-energy constant c2 gets replaced with
c2− g2c3. It follows that for c2 < 0 the situation is as before, and there is a first-order transition
at c1 = 0. The lower bound on the pion mass gets larger by a factor (|c2|+ g2c3)/|c2|. If c2 > 0,
c2− g2c3 flips sign when a→ 0, and the Aoki phase thus gets pushed away from the continuum
limit; closer to the continuum limit, when c2 < g2c3, the first-order scenario applies.

If we only couple electromagnetism, the effective potential is

Veff +∆Veff =−c1σ + c2σ
2− 1

2
e2c3(σ

2 +π
2
3 ) . (3.4)

This potential forces 〈σ〉2 + 〈π3〉2 = 1, and thus any Aoki condensate is now forced into the third
direction. Isospin is explicitly broken, but parity remains spontaneously broken when 〈π3〉 6= 0.
There are no exact Nambu–Goldstone bosons, and inside the Aoki phase

m2
π± = e2c3/ f 2 , m2

π0 = 2c2

(
1− c2

1

4c2
2

)
/ f 2 . (3.5)

Whether the charged or neutral pion mass is larger now depends on the detailed values of the
various couplings.

4. Staggered fermions

Next, we consider QCD with two staggered fermions ωi, i = 1,2. In the continuum limit, this
theory has eight flavors, because of the four-fold doubling for each staggered fermion.3 We project
these staggered fermions onto even and odd sites:

χi(x) =
1
2
(1+ ε(x))ωi(x) , χ i(x) = ω i(x)

1
2
(1− ε(x)) , (4.1)

λi(x) =
1
2
(1− ε(x))ωi(x) , λ i(x) = ω i(x)

1
2
(1+ ε(x)) ,

where
ε(x) = (−1)x1+x2+x3+x4 . (4.2)

The massless theory with this fermion content has an exact SU(2)χ ×SU(2)λ flavor symmetry. In
the continuum limit, the lattice fields χi lead to four continuum Dirac fields ψ1,2,3,4, and likewise,
the fields λi yield four continuum Dirac fields ψ5,6,7,8 [8, 9]. It is important to observe that whether

2Here the neutral pion is by definition the excitation in the direction of the condensate 〈~π〉, while the charged pions
are the Nambu–Goldstone bosons corresponding to the broken generators.

3Often the “extra” flavors due to this doubling are referred to as “taste” instead of flavor, but here we will refer to
all fermions as flavors in the continuum limit.
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any of the exact lattice symmetries are to be considered as axial symmetries depends on what type
of mass term is added to the theory. Here we will keep the theory massless, but instead consider
the effect of weakly gauging (some of) the exact flavor symmetries.

On the lattice, dynamical symmetry breaking is expected to take place, and various conden-
sates may form as a consequence. One possible condensate is ∑

8
k=1 ψkψk, which is the continuum

limit of

∑
i,µ

(
χ i(x)Uµ(x)χi(x+µ)+λ i(x)Uµ(x)λi(x+µ)+h.c.

)
. (4.3)

This operator is invariant under SU(2)χ ×SU(2)λ ; note that an operator such as χ i(x)χi(x) cannot
be constructed because of the projections in Eq. (4.1). The minimum number of links in any lattice
operator with continuum limit ∑

8
k=1 ψkψk is one. A different condensate, corresponding to a single-

site operator

∑
i

(
χ i(x)λi(x)+λ i(x)χi(x)

)
(4.4)

also exists; in the continuum limit it takes the form

ψ5ψ1 +ψ6ψ2 +ψ7ψ3 +ψ8ψ4 +h.c. . (4.5)

In contrast to the one-link operator (4.3), this latter condensate breaks SU(2)χ × SU(2)λ down
to SU(2)diag. Clearly, these two condensates are not equivalent on the lattice, even if they are in
the continuum. In the continuum, the flavor group enlarges to SU(8)× SU(8), both condensates
break this to SU(8)diag, and they can be rotated into each other by the continuum flavor group. All
we need to support this observation is to assume that the continuum limit of the lattice theory is
universal.

The two condensates are no longer equivalent when we gauge some subgroup of the lattice
symmetry group, even in the continuum limit, as we will show through two examples. First, let us
gauge just the U(1) group of transformations generated by T ε

3 , where

T ε
3 = T χ

3 −T λ
3 . (4.6)

Here T χ
a and T λ

a are the generators of SU(2)χ and SU(2)λ , respectively. To leading order in the
weak gauge coupling e, the effective potential generated by the weak gauge fields is [3]

Veff =−e2C tr(ΣQRΣ
†QL) , (4.7)

with Σ ∈ SU(8) the non-linear Nambu–Goldstone field, C > 0 [5], and in which QR and QL are
spurion fields. In order to represent the coupling to the U(1) gauge field they need to be fixed; to
what values depends on the basis, as we will see below. Once we choose QR and QL, this potential
breaks SU(8)×SU(8), and the one-link and single-site condensates are no longer degenerate. Let
us work out in more detail what this implies for the condensate 〈Σ〉.

On the one-link basis, i.e., the basis on which the one-link condensate is diagonal in the con-
tinuum limit, the corresponding lattice one-link mass term (4.3) does not break the U(1) symmetry.
On this basis, the generator for U(1) transformations takes the form [2]4

T ε
3 = τ3× τ3× I2 . (4.8)

4In is the n×n identity matrix.
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This indeed looks vector-like, and we thus have that

QR = QL = T ε
3 → Veff =−e2C tr(ΣT ε

3 Σ
†T ε

3 ) , (4.9)

with values Veff(Σ1−link) =−24e2C and Veff(Σsite) = +24e2C. Here Σ1−link = I8 corresponds to the
continuum condensate ∑

8
k=1 ψkψk, with lattice version (4.3), and Σsite = τ1× I4 corresponds to the

continuum condensate (4.5), with lattice version (4.4).
It is instructive to check this result on a different basis, the single-site basis on which the

single-site condensate is, by definition, diagonal in the continuum limit.5 The basis transformation
taking the one-link basis into the single-site basis takes T ε

3 into [2]

T̃ ε
3 =−γ5(τ2× I2× I2) , (4.10)

where we use tildes to indicate that we are now working on the single-site basis. This has the
appearance of an axial symmetry; and we have that

QR =−QL = T̃ ε
3 → Veff =+e2C tr(Σ̃T̃ ε

3 Σ̃
†T̃ ε

3 ) , (4.11)

where in the effective theory the γ5 is omitted from T̃ ε
3 . The minus sign between QR and QL

follows from the presense of the γ5 in Eq. (4.10). On this basis, on which by definition the single-
site condensate takes the form Σ̃ = I8, it is straightforward to show that the one-link condensate
has flavor structure Σ̃ = τ3× I4, and the effective potential (4.7) takes the values Veff(Σ̃1−link =

τ3× I4) =−24e2C and Veff(Σ̃site = I8) =+24e2C. Never mind what basis we use to find the pattern
of symmetry breaking, the result is that the condensate minimizing Veff is the one-link condensate,
which leaves the U(1) unbroken.

As in the previous section, we also consider the example in which we introduce weakly cou-
pled gauge fields for the whole group SU(2)χ×SU(2)λ . An intriguing possibility would be that the
condensate breaks this group down to a smaller group, producing a dynamical Higgs mechanism
that would render some of the weak gauge boson massive. Now the effective potential generated
by the weak gauge fields is

Veff =−g2
χC ∑

a
tr(ΣT χ

a Σ
†T χ

a )−g2
λ
C ∑

a
tr(ΣT λ

a Σ
†T λ

a ) . (4.12)

The low-energy constant C is the same as in Eq. (4.7). Working on the one-link basis, we find
that Veff(Σ = I8) =−12(g2

χ +g2
λ
)C, while Veff(Σ = τ1× I4) = 0, and again the one-link condensate

Σ = I8 is the absolute minimum. Again, the vacuum alignment mechanism causes the flavor group
SU(2)χ×SU(2)λ to remain unbroken, and no dynamical Higgs mechanism takes place. As before,
this exercise can be repeated on the single-site basis, with, of course, the same conclusion.

5. Conclusion

We have shown, through examples, how lattice artifacts, quark-mass induced contributions,
and weak interactions can all compete in determining the pattern of symmetry breaking in a strongly

5For the explicit construction of this basis, see Ref. [2].
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coupled gauge theory. Of course, in the continuum limit, quark-mass and weak-coupling effects
dominate, but these examples demonstrate that lattice artifacts can mask the correct phase diagram
of the theory. We find that the mechanism of vacuum alignment prevents a condensate that would
imply a dynamical Higgs mechanism in the weak sector from developing. This disproves claims
to the contrary in the literature [10]. The only assumption underlying our conclusions is that of
universality. In the staggered case, universality implies the equivalency of the single-site and one-
link condensates in the continuum limit, in the absence of the coupling to weak gauge fields. Close
enough to the continuum limit, only the weak interactions break the global flavor symmetry, and
thus only weak interactions determine the phase diagram.

This type of analysis can be extended to composite Higgs models of interest to BSM physics.
In Ref. [1] we considered for instance the SU(5)/SO(5) coset model of relevance for the “Littlest
Higgs” model [11]. In Ref. [2] we also consider a staggered example with only six flavors in the
continuum limit, by making use of one normal and one reduced staggered fermion [12, 8, 9]. As
a corrolary of our discussion, we observe that in order to determine the low-energy constants c3 in
the Wilson case, and C in the staggered case, weak gauge fields only need to be coupled to flavor
symmetries that are exact on the lattice. This observation generalizes to other cases of interest
(such as the SU(5)/SO(5) coset model) as well.
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