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1. Introduction

Over the past decade there has been significant experimental interest in mapping out the ex-
cited nucleon spectrum and understanding the underlying dynamics and structure of these states.
Such data provides an excellent opportunity to connect experiment with theoretical expectations
to gain further insight into hadronic excitations. The success of using variational techniques to
explore the hadron spectrum from Lattice QCD has shown that these methods can be utilised for
calculations of both ground state [1] and excited state [2, 3] matrix elements. In this work we per-
form an evaluation of the electromagnetic form factors of the lowest-lying spin-1/2 negative-parity
nucleon states.

2. Accessing negative parity states

The simplest approach to evaluating the correlators relevant to accessing negative-parity nu-
cleons [4] is to use the standard nucleon interpolator coupled with an additional γ5 matrix in order
to change its parity transformation properties, χp(x)→ χ−p (x) = γ5χp(x). One then evaluates the
two-point correlator in the standard fashion and projects out the state via the standard projection
operator Γ =

(
γ0+I

2

)
G−(~p, t;Γ) = ∑

~x
e−i~p·~xtr

[
Γ〈Ω |χ−p (x)χ

−
p (0) |Ω〉

]
(2.1)

=−∑
~x

e−i~p·~xtr
[
Γ〈Ω |γ5χp(x)χ p(0)γ5 |Ω〉

]
. (2.2)

However using the cyclicity of the trace, one could instead access the relevant contributions for
negative parity states from the correlator evaluated with the positive parity operator if one instead
uses the modified projector

Γ
− =−γ5Γγ5 =

(
γ0− I

2

)
. (2.3)

Such an approach has long been established as the optimal method for studying negative parity
states. However, we outline this in detail here as the arguments carry over naturally to the evaluation
of three-point correlation functions. Again, one could evaluate the three-point correlator for a
negative parity nucleon through

Gµ

−(~p
′,~p; t2, t1;Γ

′) = ∑
~x2,~x1

e−i~p′·~x2e+i(~p′−~p)·~x1 tr
[
Γ
′ 〈Ω |χ−p (x2) jµ(x1)χ

−
p (0) |Ω〉

]
(2.4)

=− ∑
~x2,~x1

e−i~p′·~x2e+i(~p′−~p)·~x1 tr
[
Γ
′ 〈Ω |γ5χp(x2) jµ(x1)χ p(0)γ5 |Ω〉

]
. (2.5)

However, we can again access the necessary terms by evaluating correlators with the positive parity
operators and projecting with the modified projector, (Γ′)− =−γ5Γ′γ5.

3. Variational Methods for matrix element determination

The goal of the this approach is to produce a set of operators φ α that satisfy

〈Ω|φ α |β , p,s〉= δ
αβ . (3.1)
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This is realised by taking an existing basis of operators {χi} and constructing the desired operators
as linear superpositions

φ
α(x) = ∑

i
vα

i χi(x) , φ
α(x) = ∑

j
χ j(x)uα

j . (3.2)

Starting from the matrix of cross correlators

Gi j(~p, t; Γ) = ∑
~x

e−i~p·~xtr
[
Γ〈Ω|χi(x)χ j(0)|Ω〉

]
, (3.3)

and noting Gi j(~p, t;Γ)uα
j provides a recurrence relation with time dependence e−Eα t , one can show

that the necessary vectors vα
i and uα

j are the eigenvectors of the generalised eigenvalue equations

vα
i Gi j(~p, t0 +∆t; Γ) = e−Eα ∆t vα

i Gi j(~p, t0; Γ) , (3.4a)

Gi j(~p, t0 +∆t; Γ)uα
j = e−Eα ∆t Gi j(~p, t0; Γ)uα

j . (3.4b)

It is worth noting that these equations are evaluated for a given 3-momentum ~p and projection
operator Γ and so the corresponding operators satisfy Eq. (3.1) for this momentum and parity only.
One can obtain the correlator for the state α by projecting with the corresponding eigenvectors

Gα(~p, t;Γ)≡ vα
i (~p)Gi j(~p, t;Γ)uα

j (~p) , (3.5)

from which the desired quantities are extracted in the standard way. To access the corresponding
three-point correlator, it is a simple matter of applying the relevant eigenvectors to the correspond-
ing three-point function, where care is taken to ensure that the projection is done with the correct
momenta for source and sink

Gα(~p′,~p, t2, t1; Γ
′)≡ vα

i (~p
′)Gi j(~p′,~p, t2, t1; Γ

′)uα
j (~p) . (3.6)

From the projected two and three-point functions one then continues on in the standard way by
constructing a suitable ratio to isolate the desired matrix element. Here we choose to use the ratio
as defined in Ref. [5]. Using the modified projectors outlined in the previous section, we arrive at
the ratio used in the determination of the form factors

Rα
−(~p

′,~p;Γ
′,Γ) =

√
〈Gα(~p′,~p, t2, t1;(Γ′)−)〉〈Gα(~p,~p′, t2, t1;(Γ′)−)〉

〈Gα(~p′, t2;Γ−)〉〈Gα(~p, t2;Γ−)〉
. (3.7)

4. Negative Parity Baryon Form Factors

Here we consider the electromagnetic form factors for a negative parity, spin-1/2 baryon. To
make the connection with the familiar positive parity case, we note that negative-parity baryon
spinors can be defined relative to positive parity spinors by again multiplying by a γ5 matrix and
attributing the odd-parity baryon mass to considerations of p

u(p,s)→ u−(p,s) = γ5 u(p,s) . (4.1)
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One can then show through the vertex decomposition presented in Refs. [6, 7] that it is possible
to write the +→ + and −→− transitions, of which the elastic processes are a special case, in a
common form. With this understanding it follows that the matrix element can be expressed as1

〈N−, p′,s′ | jµ(0) |N−, p,s〉=
(

M2

EpEp′

)1/2

u(p′,s′)
(

γ
µF1(Q2)+ i

σ µνqν

2M
F2(Q2)

)
u(p,s) . (4.2)

These are in turn related to the Sachs Electric and Magnetic form factors

GE(Q2) = F1(Q2)− Q2

(2M)2 F2(Q2) , (4.3)

GM(Q2) = F1(Q2)+F2(Q2) . (4.4)

To isolate these form factors, we follow the approach outlined in Refs. [8, 9]. Having projected out
the correlators relevant for the state |α〉 and formed the necessary ratio, we choose the incoming
state to be at rest and so extract GE and GM through the following terms

GE(Q2) = R4
−(~q,0;Γ4,Γ4) , GM(Q2) =

(Eq +M)

|~q|
R3
−(~q,0;Γ2,Γ4) , (4.5)

where R is the reduced ratio

Rµ

−(~p
′,~p;Γ) =

[
2Ep

Ep +M

]1/2[ 2Ep′

Ep′+M

]1/2

Rµ

−(~p
′,~p;Γ) . (4.6)

5. Calculation Details

The states of interest, the S11(1535) and the S11(1650), have been isolated in a previous CSSM
study [10] and so we shall use the same operator basis and parameters in our variational analysis.
To form our operator basis we use local nucleon operators

χ1(x) = ε
abc
(

uTa(x)Cγ5 db(x)
)

uc(x) , χ2(x) = ε
abc
(

uTa(x)C db(x)
)

γ5uc(x) , (5.1)

coupled with varying levels of gauge-invariant Gaussian smearing applied to both fermion source
and sink. In particular, we use 16, 35, 100 and 200 sweeps of smearing applied to the spatial
dimensions only, with a smearing fraction α = 0.7. This allows for the construction of an 8 ×
8 correlation matrix. For the variational parameters we use t0 = 18 and ∆t = 2 relative to the
quark source at t = 16. The calculation is performed on the PACS-CS 2 + 1 flavour dynamical
gauge-field configurations [11] made available through the ILDG [12]. These configurations use an
O(a)-improved Wilson-Clover fermion action and Iwasaki gauge-action, with β = 1.90 resulting
in a lattice spacing a = 0.0907 fm. The lattices have dimension 323 × 64 giving rise to a spatial
box of length L = 2.9 fm. We have access to five light quark masses, with the strange quark mass
held fixed. The resulting pion masses range from 702 MeV right down to 156 MeV. The resulting
spectrum is presented in Fig. 1. We observe two low-lying eigenstates with small mass difference,
consistent with the experimentally observed masses for the S11(1535) and S11(1650). It is these
states whose form factors we shall examine herein.

1We note that this result could also be obtained through the freedom to choose an intrinsic parity for the baryon
spinor. However, this discussion is valuable in the consideration of parity-changing electromagnetic transitions.
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Figure 1: The four lowest lying-states observed in our 1/2
− nucleon spectrum obtained via an 8

× 8 correlation matrix formed from smeared χ1 and χ2 interpolators. The light blue data points
correspond to the PDG values [14] for the negative parity nucleon states with 3-star determination
or higher.

For the SST inversion we choose to use the fixed current method with a conserved-vector cur-
rent inserted at tS = 21. For our error analysis we use a second-order single-elimination jackknife
method where the χ2

dof is obtained via a covariance matrix analysis. For the form factors we con-
sider all but the lightest quark mass. The eigenstate projected correlators are fitted to a single state
ansatz. By studying the regions where log(G) behaves linearly we ensure that the correlator is
dominated by a single energy eigenstate. Further discussion can be found in Refs. [3, 13].

6. Results

In Figs. 2 and 3 we present the quark-sector results for the electric and magnetic form factors
respectively. We present results for single quarks of unit charge. The data is presented at a single
quark mass corresponding to mπ = 0.570 GeV. However, all masses considered display behaviour
consistent with that in Fig. 2 and 3. The colours match up with the states presented in Fig. 1, with
the blue identified as the S11(1535) and the red as the S11(1650).

We note that due to the similar masses between these two states, we are probing each state at
essentially the same value of Q2. For the electric form factor, we find that both states take on very
similar values in both quark sectors, with the doubly-represented quark-sector form factor slightly
smaller than the singly-represented sector. Examining the magnetic quark sector we see distinctly
different behaviour between these two states. Though the doubly-represented quark sector is sim-
ilar, we find that the singly-represented quark sector in the S11(1650) is positive (same sign as
the doubly-represented sector) while the corresponding contribution in the S11(1535) is negative.
Furthermore, the magnitude of the singly-represented quark contribution is somewhat larger in the
S11(1535) than it is in the S11(1650).
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Figure 2: The doubly-represented (left) and singly-represented (right) quark sector contributions to
the the Sachs electric form factor GE for mπ = 0.570 GeV. Results are provided for single quarks
of unit charge. The blue data points correspond to the S11(1535) while the red data points to the
S11(1650).
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Figure 3: The doubly-represented (left) and singly-represented (right) quark sector contributions to
the the Sachs magnetic form factor GM for mπ = 0.570 GeV. Results are provided for single quarks
of unit charge. Again, the blue data points correspond to the S11(1535) while the red data points to
the S11(1650).

7. Conclusions

Herein we have presented the first lattice QCD calculation of the electromagnetic form factors
of the two lowest-lying spin-1/2 negative-parity nucleons. Using variational techniques we are able
to disentangle the relevant matrix element for these two states, allowing us to probe their underlying
structure.

Both states display very similar values in their electric form factor. However, comparison of
the magnetic form factor highlights distinctly different behaviour in the quark sector contributions.
Such behavior is anticipated in simple quark models due to differences in the underlying space-
spin-flavour symmetry construction of these states.

The difference in the sign between the doubly-represented and singly-represented quark con-
tributions in the S11(1535) and the sign symmetry of quark sector contributions in the S11(1650)
will give rise to significantly different baryon form factors. It will be interesting to compare these
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with phenomenological estimates and gain insight into the mechanisms of QCD giving rise to these
observations. Future work will generalise these techniques to examine the corresponding helicity
amplitudes for these states, central to the radiative transitions measured in experimental programs.
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