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1. Introduction

There still is an unexplained 3.4 σ discrepancy between the experimental measurement [1]
of the anomalous magnetic moment of the muon, aµ =

(g−2)µ

2 , and the theoretical determination
based on the standard model [2]. The leading uncertainties in the theoretical computation are
associated with two non-perturbative QCD corrections : the hadronic vacuum polarization contri-
bution aHVP,LO

µ at O(α)2 and the hadronic light-by-light scattering term at O(α3). The former is
presently best determined via dispersion relations applied to experimental cross sections for e+e−

annihilation and τ decays into hadrons [3, 4]. In anticipation of the future Fermilab E989 exper-
iment, whose goal is to divide by 4 the error on the measurement of aµ [5], several groups are
now working on computations of aHV P,LO

µ using lattice QCD simulations (see e.g. for their latest
contributions [6, 7, 8, 9, 10, 11]). This approach will provide a valuable ab-initio cross-check for
phenomenological determinations.

We present a method for obtaining the scalar polarization function, Π(Q2), and the Adler func-
tion at all discrete lattice values of Q2 including zero, directly from the vector-vector correlation
function. We then use this approach and the usual one based on the vacuum polarization tensor,
to study finite-volume effects in the lattice computation of Π(Q2) and aHVP,LO

µ . In particular, we
present preliminary results of a dedicated study of these effects at a fixed lattice spacing of 0.104fm
and pion mass Mπ ∼ 292MeV, for lattices ranging in spatial size L from 2.5 to 8.3fm.

2. Usual and new ways to obtain aHVP,LO
µ on the lattice

Based on a formula first derived in [12], it was shown in [13] how aHVP,LO
µ can be obtained

from the polarization tensor computed directly in Euclidean spacetime, using lattice QCD simula-
tions. Schematically one computes the Fourier transform of the expectation value of the product of
two electromagnetic quark currents, Jµ , at Euclidean lattice momenta Q:

Πµν(Q) = a4
∑
x
〈Jµ(x)Jν(0)〉eiQ·x . (2.1)

Neglecting Euclidean O(4) violations, the vacuum polarization tensor, Πµν(Q), can be written in
terms of a single invariant function Π(Q2), as:

Πµν(Q) = (QµQν −δµνQ2)Π(Q2) . (2.2)

Note that the decomposition assumes that Πµν(Q = 0) = 0, which is certainly true in infinite
volume, and is required for the photon to remain massless. But it is not necessarily the case in
a finite spacetime. Thus, we distinguish two methods. In the first, which we call “usual without
subtraction”, we define Π(Q2)≡Πµν(Q)/(QµQν−δµνQ2). In the usual method with subtraction,
we take Π(Q2) ≡ [Πµν(Q)−Πµν(0)]/(QµQν − δµνQ2) [14]. Here we consider only the spatial,
Πii(Q), i = 1,2,3, components of the polarization tensor. The resulting Π(Q2) is then fitted as
a function of Q2 and extrapolated to Q2 = 0 to perform the required additive renormalization,
Π̂(Q2) = Π(Q2)−Π(0). The same fit is used to integrate the polarization function with a known
QED kernel wΠ(Q2), yielding the muon anomalous magnetic moment through:

aHVP,LO
µ = 4π

2
(

α

π

)2
∑

f=u,d,s,...
q2

f

∫
∞

0
dQ2wΠ(Q2)Π̂ f (Q2) , (2.3)
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where q f is the charge of quark flavor f in units of e. aHVP,LO
µ is then studied as a function of

simulations parameters and interpolated and/or extrapolated to the physical values of the quark
masses and to the continuum and infinite volume limits.

A precise determination of aHVP,LO
µ on the lattice is particularly challenging because the kernel

wΠ peaks at Q2∼ (mµ/2)2, which is smaller than the lowest non-zero momenta (2π/L,T ) available
in current simulations on T ×L3 lattices with periodic boundary conditions. Moreover, Πµν(Q) is
noisy for small values of Q2.

Besides the usual methods for determining Π(Q2) described above, we consider a third ap-
proach, which circumvents the problem that Π(Q2 = 0) is not directly accessible. Thus, it elim-
inates the systematic and statistical error associated with the extrapolation to Q2 = 0 required to
renormalize Π(Q2) and to describe this function for the values of Q2 which contribute most to
aHVP,LO

µ .
This second set of methods considers Fourier derivatives of the polarization tensor: 1

∂ρ∂σ Πµν(Q) =−a4
∑
x

xρxσ 〈Jµ(x)Jν(0)〉eiQ·x . (2.4)

We call it the -2nd derivative- method. By appropriately choosing the indices and the four-
momentum, one can obtain directly the desired polarization scalar through:

Π(Q2) = ∂µ∂νΠµν(Q)|Qµ=Qν=0, µ 6= ν , (2.5)

or through

Π(Q2) =−1
2

∂µ∂µΠνν(Q)|Qρ=0,ρ 6=ν , µ 6= ν . (2.6)

One can also obtain the Adler function:

A (Q2) = Q2 ∂Π(Q2)

∂Q2 =−1
2

∂µ∂µΠµµ(Q)|Qµ=0 . (2.7)

In all cases, one may choose to sum over repeated indices, including spatial and/or temporal com-
ponents, depending on the symmetries of the lattice under consideration. Here we focus on the
polarization scalar and we consider only results obtained from Eq. (2.5) with the spatial compo-
nents, Πi j(Q), i 6= j = 1,2,3, of the polarization tensor. In general, the 2nd derivative methods
have the advantage that they also work to obtain information at Q2 = 0, thereby guaranteeing that
the interesting values of Q2 are reached by a controlled interpolation. A possible drawback is that
the factor of xρxσ term, in Eq. (2.4), emphasizes long-distance contributions which are more noisy
and more subject to finite-volume effects.

In both the usual and 2nd derivative approaches we split up the fit of Π(Q2) vs Q2 into two
regions, as suggested in [11]. In the -low- Q2 region, we fit a [1,1], three parameter Padé to the
4 lowest available momentum points. The -high- Q2 results up to 1GeV2 are fit to another Padé.
In that way, the fit to the low region, which contributes most to aHVP,LO

µ , and has larger statistical
errors, is not distorted by the more precise results at higher values of Q2. The integration yielding
aHVP,LO

µ is split accordingly, with no particular matching at 0.2GeV2. Note that, in this proceedings,
we only integrate up to Q2 = 1GeV2 and thus consider a quantity aHVP,LO

µ (Q2 ≤ 1GeV2) which is
not quite the HVP contribution to the muon anomalous magnetic moment.

1Fourier derivatives are also considered in [9, 10], for instance, but only in the time direction and at Q2 = 0.
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3. Finite-volume study

The preliminary finite-volume study presented here is based on four Budapest-Marseille-
Wuppertal, N f = 1+ 1+ 1+ 1 ensembles that were generated for the recent calculation of the
neutron-proton mass difference in QCD+QED [15]. Here we consider N f = 2+ 1 valence fla-
vors that couple only to the SU(3)-color components of the links, with bare masses adjusted to
reproduce the isospin averaged u and d quark and the s quark masses of the N f = 1+ 1+ 1+ 1
calculation. The results are obtained using a tree-level O(a2) improved Symanzik gauge action,
together with tree-level clover-improved Wilson fermions. The gluon fields undergo three steps of
HEX smearing before being coupled to the quarks. The hadronic vacuum polarization tensor, Πµν ,
is computed with a local vector current at the source (indexed by ν) and a conserved vector current
at the sink (indexed by µ). For the present study we neglect disconnected components, which are
expected to be small compared to the connected contributions that we retain, and which should not
appreciably modify the finite-volume behavior.

The four ensembles considered here are those from [15] with β = 3.2, corresponding to a =

0.104fm, and with Mπ ∼ 292MeV. The bare mass parameters used in the valence sector are amud =

−0.077 and ams = −0.050. The four ensembles differ only in their volumes, with the spatial size
of spacetime, L, ranging from 2.5 to 8.3fm. The relevant characteristics of the ensembles are:

T/a L/a Mπ (MeV) T (fm) L (fm) MπT MπL
48 24 295.2(1.4) (0.50%) 5.0 2.5 7.5 3.7
64 32 292.6(7) (0.23%) 6.7 3.3 9.9 4.9
96 48 292.0(6) (0.20%) 10.0 5.0 14.8 7.4
64 80 292.1(3) (0.12%) 6.7 8.3 9.9 12.3

Three of the four simulations have T/L = 2 and all are on asymetrical lattices. The pion is light
enough to allow the ρ to decay into two pions in the infinite volume limit. It is important to note
that besides the u and d quarks being more massive than physical, the strange is not finely tuned to
its physical value here. Thus, one should not expect these quark’s contributions to the polarization
scalar and aHVP,LO

µ to take on their (precise) physical values. This is all the more true that we leave
out the finite renormalization, ZV , of the local electromagnetic quark current, which contributes
only an overall factor to these quantities.

We begin by studying the light, up-down quark contribution to aHVP,LO
µ . In the left panel of

Fig. 1 we show Πud(Q2)≡Πu(Q2) = Πd(Q2) vs Q2 for the four different volumes, obtained using
the usual and 2nd derivative (Eq. (2.5)) methods. Also shown are the fits to Padés described above.
While for the smallest volume the three methods yield results which differ significantly at low Q2,
this difference reduces as the volume is increased, and the three methods give fully compatible
results in the largest volume. This convergence of the methods in the limit of large volumes is also
clearly visible in the right panel of Fig. 1, where the values of aHVP,LO

µ,ud (Q2 ≤ 1GeV2), obtained
by integrating the fit functions for Π̂ud(Q2) according to Eq. (2.3), are plotted against 1/MπL. We
choose MπL because it is dimensionless and because 1/Mπ is the longest correlation length in the
system. Since the dependence of Mπ on L is very weak, the 1/MπL dependence shown here is
equivalent to a 1/L dependence.
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Figure 1: (Left panel) Πud(Q2) vs Q2 for Mπ ∼ 292MeV, as obtained using the usual and 2nd derivative
(Eq. (2.5)) methods in four volumes and with all other lattice parameters fixed. The data points are the
values obtained from the current-current correlation function and its Fourier derivatives. The curves are the
corresponding fits. (Right panel) aHVP,LO

µ,ud (Q2 ≤ 1GeV2) vs 1/Mπ L obtained from the polarization functions
in the left panel.

While results from the three methods converge in the large-volume limit, in smaller volumes
the finite-size corrections are significant in some cases. In the smallest volume, with L = 2.5fm
or LMπ = 3.7, the finite-volume correction on aHVP,LO

µ,ud (Q2 ≤ 1GeV2), obtained using the 2nd
derivative method, is ∼ 35%. It is even larger for the usual method without subtraction: around
200%. In the 2nd derivative case, it is reduced to below 10% by the time L >∼ 5fm. Only results
obtained from the usual method with subtraction do the finite-volume effects remain small for all
volumes considered.

An interesting feature of the 2nd derivative method is that it features significantly smaller
statistical errors on aHVP,LO

µ (Q2 ≤ 1GeV2) than the usual method without subtraction. This remain
true to a much smaller extent for the usual method with subtraction. In the former case, it is
mainly due to the fact that the 2nd derivative method eliminates the noisy Πud

µν(0), as does usual
method with subtraction. The additional statistical improvement compared to the usual method with
subtraction results from the fact that the 2nd derivative method allows the extraction of Π(Q2 = 0).
This constrains the statistical fluctuations of the fitted Π(Q2) vs Q2 in the very important low-Q2

region. And though we do not investigate this issue here, this additional constraint will also reduce
systematic errors by replacing the usual extrapolation by an interpolation.

We now turn to the strange-quark contribution to aHVP,LO
µ and perform the same study of

finite-volume effects as for the light contribution. The corresponding results for Πs(Q2) vs Q2

and aHVP,LO
µ,s (Q2 ≤ 1GeV2) vs 1/MπL are shown in Fig. 2. For both quantities, the same general

features, as were observed for the light contribution, are seen here. In particular, the results obtained
from the usual method with subtraction show no volume dependence for the lattices considered.
On the other hand, significant finite-volume effects are still observed for the two other methods
in smaller volumes, but these disappear as one goes to larger lattices. They are, nevertheless,
much smaller than in the light case. For the strange contribution, the finite-volume correction,
in the smallest volume with L = 2.5fm or LMπ = 3.7, is now ∼ 25% on aHVP,LO

µ (Q2 ≤ 1GeV2)

obtained using the derivative method and ∼ 20% when it is obtained using the usual approach
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Figure 2: Same as Fig. 1, but for the strange-quark contribution.

without subtraction. By the time one reaches L = 5.0fm or LMπ = 7.4, the effect is not statistically
significant for the usual method and below 5% for the derivative approach.

4. Conclusion

In addition to the usual methods for obtaining the polarization scalar, Π(Q2), which consist
in dividing the polarization tensor Πµν(Q2), or its subtracted counterpart [Πµν(Q2)−Πµν(0)], by
(QµQν − δµνQ2), we have considered a 2nd derivative method based on Fourier derivatives of
quark-electromagnetic-current two-point functions. This method yields Π(Q2) directly, obviating
the need to divide by (QµQν−δµνQ2), which clearly is not possible when Qµ = 0. One advantage
of this method is that it gives direct access to Π(0). In addition, it does so in a way which is
consistent with the results obtained at other values of Q2. Indeed, the study presented above shows
that it may be dangerous to try to combine Π(0) obtained through derivatives with Π(Q2), Q2 > 0,
obtained in the usual ways, as the methods have significantly different systematic errors. The study
also shows the advantage of being able to determine Π(0) directly: it reduces the statistical errors
on the result for the muon anomalous magnetic moment, and a similar reduction is anticipated for
the systematic errors.

Using the usual-without-subtraction, usual-with-subtraction and 2nd derivative methods for
determining Π(Q2), we have conducted a dedicated study of finite-volume effects. We find that
the size of finite-volume corrections depends strongly on the method used to obtain Π(Q2), on the
quark-contribution considered and, of course, on volume.

The u and d quarks in this study were chosen to be light enough for the ρ to be a resonance
in infinite volume. Thus we expect that the physics which governs finite-volume effects here is, at
least qualitatively, similar to that which is at play for light quarks at their physical mass. If that is
the case, for the contributions of the u, d and s quarks, the usual method with subtraction is clearly
preferable from the point of view of finite volume effects. As the volume is made larger, the fact
that the 2nd derivative method leads to smaller statistical and Π(Q2)-vs-Q2 fit uncertainties makes
it increasingly attractive. Of course, further study is required to understand the extent to which
these conclusions carry over to the situation of physical, light-quark masses.
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