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1. Introduction

In the description of hadron structure, transverse momentum-dependent parton distribution
functions [1] (TMDs) play a role complementary to generalized parton distributions (GPDs).
Whereas GPDs encode information about the transverse spatial distribution of partons (through
Fourier transformation with respect to the momentum transfer), TMDs contain information about
the transverse momentum distribution of partons. Cast in a Lorentz frame in which the hadron
of massmh propagates with a large momentum in the 3-direction,P+ ≡ (P0 +P3)/

√
2≫ mh, the

quark momentum components scale such that TMDs are principally functions f (x,kT) of the quark
longitudinal momentum fractionx = k+/P+ and the quark transverse momentum vectorkT , with
the dependence on the componentk− ≡ (k0−k3)/

√
2≪ mh becoming ignorable in this limit. The

function f (x,kT) will thus be regarded as having been integrated overk−.

Experimentally, TMDs manifest themselves in angular asymmetries observed in processes
such as semi-inclusive deep inelastic scattering (SIDIS) and the Drell-Yan (DY) process. Corre-
sponding signatures have emerged at COMPASS, HERMES and JLab [2–4], and that has motivated
targeting a significant part of the physics program at futureexperiments in this direction, e.g., at
the upgraded JLab 12 GeV facility and at the proposed electron-ion collider (EIC). Relating the
experimental signature to the hadron structure encoded in TMDs requires a suitable factorization
framework, the one having been advanced in [5–8] being particularly well-suited for connecting
phenomenology to lattice QCD. Factorization in the TMD context is considerably more involved
than standard collinear factorization, with the resultingTMDs in general being process-dependent,
via initial and/or final state interactions between the struck quark and the hadron remnant.

2. Definition of TMD observables

The definition of TMD observables amenable to lattice evaluation has been laid out succinctly
in a previous Lattice conference proceedings contribution[9], for a more detailed discussion,
cf. [10]. Summarizing briefly, the starting point is the fundamental correlator

Φ̃[Γ]
unsubtr.(b,P,S, . . .) ≡ 1

2
〈P,S| q̄(0) Γ U [0,ηv,ηv+b,b] q(b) |P,S〉 (2.1)

whereS denotes the spin of the hadron andΓ stands for an arbitraryγ-matrix structure. The
staple-shaped gauge connectionU follows straight-line paths connecting the positions given in
its argument; the unit vectorv thus specifies the direction of the staple, whereasη parametrizes
its length. The presence ofU introduces divergences iñΦ[Γ]

unsubtr.additional to the wave function
renormalizations of the quark operators; these divergences accordingly must ultimately be com-
pensated by additional “soft factors”, which are expected to be multiplicative and do not need to
be specified in detail here, since only appropriate ratios inwhich they then presumably cancel will
ultimately be considered. In order to regularize rapidity divergences, the staple directionv is taken
slightly off the light cone into the space-like region [5, 6], with perturbative evolution equations
governing the approach to the light cone [7]. A useful parameter characterizing how closev is to
the light cone is the Collins-Soper evolution parameterζ̂ = v ·P/(|v| |P|), in terms of which the
light cone is approached for̂ζ → ∞. The correlator (2.1) can be decomposed in terms of invariant
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amplitudesÃiB. Listing only the components relevant for the Sivers and Boer-Mulders effects,

1
2P+

Φ̃[γ+]
unsubtr. = Ã2B + imhεi j biSj Ã12B (2.2)

1
2P+

Φ̃[iσ i+γ5]
unsubtr. = imhεi j b j Ã4B−SiÃ9B− imhΛbiÃ10B +mh[(b·P)Λ−mh(bT ·ST)]biÃ11B , (2.3)

whereΛ denotes the hadron helicity (i.e.,S+ = ΛP+/mh, S− = −Λmh/2P+). These amplitudes
are useful in that they can be evaluated in any desired Lorentz frame, including a frame which
is particularly suited for the lattice calculation. Specializing to TMDs integrated over momentum
fractionx, by considering specificallyb·P = 0, they serve to define the “generalized Sivers shift”

〈ky〉TU(b2
T , . . .) = −mh Ã12B(−b2

T , . . .)/Ã2B(−b2
T , . . .) = mh f̃⊥[1](1)

1T (b2
T , . . .)/ f̃ [1](0)

1 (b2
T , . . .) (2.4)

where the right-hand expression introduces the notation interms of Fourier-transformed TMD mo-
ments, for details, cf. [10]. In thebT → 0 limit, (2.4) formally represents the average transverse
momentumky of unpolarized (“U ”) quarks orthogonal to the transverse (“T”) spin of the hadron,
normalized to the corresponding number of valence quarks. Analogously, one defines the “gener-
alized Boer-Mulders shift”

〈ky〉UT(b2
T , . . .) = mh Ã4B(−b2

T , . . .)/Ã2B(−b2
T , . . .) = mhh̃⊥[1](1)

1 (b2
T , . . .)/ f̃ [1](0)

1 (b2
T , . . .) (2.5)

which in thebT → 0 limit formally represents the average transverse momentum ky of quarks
polarized in the transverse (“T”) x-direction orthogonal toky, in an unpolarized (“U ”) hadron, again
normalized to the corresponding number of valence quarks. The ratios (2.4) and (2.5) are designed
to cancel both multiplicative soft factors associated withthe gauge connectionU as well as wave
function renormalizations attached to the quark operatorsin (2.1) at finite physical separationb.

3. Lattice evaluation and results

To access generalized shifts such as (2.4) and (2.5) within lattice QCD, one calculates hadron
matrix elements of the type (2.1) and then decomposes them into invariant amplitudes, as given in
(2.2)-(2.3). For this to be possible, it is crucial to work ina scheme where the four-vectorsb and
v are generically space-like, for the following reason: By employing a Euclidean time coordinate
to project out hadron ground states via Euclidean time evolution, lattice QCD cannot straightfor-
wardly accomodate operators containing Minkowski time separations. The operator of which one
takes matrix elements thus has to be defined at a single time. Only if both b andv are space-like is
there no obstacle to boosting the problem to a Lorentz frame in whichb andv are purely spatial,
and evaluating̃Φ[Γ]

unsubtr.in that frame. The results extracted for the invariant amplitudesÃiB are then
immediately valid also in the original frame in which (2.1) was initially defined, thus completing
the determination of quantities of the type (2.4) and (2.5).

Since, in a numerical lattice calculation, the staple extent η necessarily remains finite, two
extrapolations must be performed from the generated data, namely, the one to infinite staple length,
η → ∞, and the extrapolation of the staple direction towards the light cone,ζ̂ → ∞. Whereas the
former extrapolation is under control for a range of parameters used in this work, the latter presents
a challenge, owing to the limited set of hadron momentaP accessible with sufficient statistical
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Figure 1: Dependence of the generalized Sivers shift on the staple extent at a fixedbT andζ̂ , in a coarse
lattice mixed action calculation [10] (left) and a fine lattice domain wall fermion calculation (right).
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Figure 2: Generalized Sivers shift as a function ofbT in theη → ∞ SIDIS limit, at a fixedζ̂ , in a coarse
lattice mixed action calculation [10] (left) and a fine lattice domain wall fermion calculation (right).
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Figure 3: Generalized Sivers shift as a function ofζ̂ in theη → ∞ SIDIS limit, at a fixedbT , in a coarse
lattice mixed action calculation [10] (left) and a fine lattice domain wall fermion calculation (right).

accuracy. This issue has been investigated at length in [11]. The present study focuses instead
on another aspect, namely, whether TMD ratios of the type (2.4) and (2.5), which are designed to
cancel soft factors and multiplicative renormalization constants, are indeed robust under changes
of the discretization scheme and lattice cutoff. Figs. 1-6 present new data for the isovector1 Sivers

1In the isovector,u−d quark combination, diagrams with operator insertions in disconnected quark loops, which
have not been evaluated, cancel.
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Figure 4: Dependence of the generalized Boer-Mulders shift on the staple extent at a fixedbT andζ̂ , in a
coarse lattice mixed action calculation [10] (left) and a fine lattice domain wall fermion calculation (right).
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Figure 5: Generalized Boer-Mulders shift as a function ofbT in theη → ∞ SIDIS limit, at a fixedζ̂ , in a
coarse lattice mixed action calculation [10] (left) and a fine lattice domain wall fermion calculation (right).
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Figure 6: Generalized Boer-Mulders shift as a function ofζ̂ in theη → ∞ SIDIS limit, at a fixedbT , in a
coarse lattice mixed action calculation [10] (left) and a fine lattice domain wall fermion calculation (right).

and Boer-Mulders shifts (2.4) and (2.5) in the nucleon, obtained using a RBC/UKQCD 2+1-flavor
domain wall fermion ensemble with a lattice spacing ofa = 0.084fm, corresponding to a pion
mass ofmπ = 297MeV. They are juxtaposed in Figs. 1-6 with correspondingdata previously
obtained [10] using domain wall valence quarks on a MILC 2+1-flavor gauge ensemble with a
lattice spacing ofa = 0.12fm, corresponding to a pion massmπ = 518MeV. Note, thus, that the
two ensembles differ significantly not only in discretization scheme and lattice cutoff, but also in
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the pion mass. However, the previous mixed action study [10]revealed no significant dependence
of the observables investigated here on the pion mass between mπ = 518MeV andmπ = 369MeV,
and therefore it is plausible to nevertheless view the comparison presented here primarily as a test
for the presence of large discretization scheme and latticecutoff effects.

Fig. 1 displays the dependence of the Sivers shift (2.4) on the staple extent for a given quark
separationbT and a given staple direction characterized byζ̂ . The T-odd behavior of this observable
is evident, withη → ∞ corresponding to the SIDIS limit, whereasη →−∞ yields the DY limit.
The data level off to approach clearly identifiable plateauxas the staple length grows. The limiting
SIDIS and DY values, represented by the open symbols, are extracted by imposing antisymmetry in
η , allowing one to appropriately average theη →±∞ plateau values. Fig. 2 summarizes the results
in the SIDIS limit for differentbT at a givenζ̂ , where the shaded area below|bT |= 2a indicates the
region where the results may be significantly affected by finite lattice cutoff effects. Finally, Fig. 3
summarizes the dependence of the Sivers shift on the Collins-Soper evolution parameter̂ζ , with
|bT | kept fixed. Note that the total shift is represented by the blue data points; the green data points
correspond to a certain partial contribution to the Sivers shift which vanishes at̂ζ = 0, but domi-
nates the quantity at largêζ ; comparison of the full Sivers shift with the partial contribution thus
can give an indication of convergence towards the largeζ̂ limit. For further details, cf. [10]. The
signal for the shifts quickly deteriorates as the nucleon momentumP, and thusζ̂ , is increased. No
clear trend can be identified at the present level of accuracyasζ̂ rises; connecting with perturbative
evolution equations at largêζ will represent a challenge for the present approach.

Clearly, the results for the Sivers shift obtained on the twoensembles are compatible, except
for deviations at small separations|bT |, where finite lattice cutoff effects are indeed expected. This
is observed in spite of the considerable differences between the ensembles in terms of discretization
scheme and lattice spacing (as well as pion mass, cf. comments further above). Another comparison
focused on discretization and cutoff effects at essentially fixed pion mass will be possible in follow-
up work employing a clover fermion ensemble at pion massmπ = 317MeV and lattice spacinga=

0.114fm, generated by K. Orginos and collaborators in the Jefferson Lab lattice group. Preliminary
analysis of the corresponding data corroborates the findings presented here.

Figs. 4-6 present data for the Boer-Mulders shift (2.5) analogous to Figs. 1-3. The correspon-
dence between the data obtained on the two analyzed ensembles persists. The relative uncertainties
in the case of the Boer-Mulders shift are somewhat larger than in the case of the Sivers shift. One
reason for this is that, if one separates theu- andd-quark contributions, the Sivers shifts in the
two cases are of opposite sign (thus reinforcing each other in theu− d difference), whereas the
Boer-Mulders shifts are of the same sign, thus canceling each other to some extent.

4. Summary and outlook

Within a continuing exploration of TMD calculations using lattice QCD, the principal focus
of the present work is an empirical study of the lattice discretization and cutoff dependence of
TMD ratio observables of the type (2.4) and (2.5). TMDs are defined via hadron matrix elements
of nonlocal operators containing staple-shaped gauge connections, cf. (2.1), such as to incorporate
final/initial state interactions (for the SIDIS/DY processes, respectively). In addition to renormal-
ization factors associated with the quark fields, the gauge connections call for the introduction of
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more intricate soft factors in order to effect their regularization and renormalization. While these
factors are expected to be multiplicative, no rigorous justification of this working assumption, in
particular in the lattice formulation, is available. The data gathered in the present work permit an
empirical assessment of whether TMD ratios of the type (2.4)and (2.5), defined such as to cancel
multiplicative renormalization and soft factors, indeed behave in a stable manner under a significant
change of the discretization scheme and cutoff. No substantive variation was detected in comparing
the results for the TMD ratios obtained using the two ensembles under consideration. It should be
noted that these two ensembles differ significantly not onlyin the discretization scheme and cutoff,
but also in the pion mass; however, preliminary results fromfollow-up work using a clover fermion
ensemble at a pion mass ofmπ = 317MeV and lattice spacinga = 0.114fm, which provides a
more focused comparison with the domain wall fermion ensemble analyzed here, corroborate the
findings of the present study.
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