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1. Introduction

In the description of hadron structure, transverse mommesstependent parton distribution
functions [1] (TMDs) play a role complementary to generdizparton distributions (GPDs).
Whereas GPDs encode information about the transversealsgagiribution of partons (through
Fourier transformation with respect to the momentum tremsTMDs contain information about
the transverse momentum distribution of partons. Cast i@tz frame in which the hadron
of massm, propagates with a large momentum in the 3-direct®h= (P°+ P3)/v/2 > m, the
quark momentum components scale such that TMDs are priycfpactions f(x, kr) of the quark
longitudinal momentum fractior = k™ /P* and the quark transverse momentum veg&igrwith
the dependence on the componkent= (k% —k3) /v/2 < my, becoming ignorable in this limit. The
function f (x, k) will thus be regarded as having been integrated &ver

Experimentally, TMDs manifest themselves in angular aswytnies observed in processes
such as semi-inclusive deep inelastic scattering (SIDig)tae Drell-Yan (DY) process. Corre-
sponding signatures have emerged at COMPASS, HERMES aihdJt4], and that has motivated
targeting a significant part of the physics program at fugKperiments in this direction, e.g., at
the upgraded JLab 12 GeV facility and at the proposed eleatro collider (EIC). Relating the
experimental signature to the hadron structure encodediDsTrequires a suitable factorization
framework, the one having been advanced in [5-8] beingqaatily well-suited for connecting
phenomenology to lattice QCD. Factorization in the TMD eotitis considerably more involved
than standard collinear factorization, with the resulfiidDs in general being process-dependent,
via initial and/or final state interactions between thedtrguark and the hadron remnant.

2. Definition of TMD observables

The definition of TMD observables amenable to lattice ev@unahas been laid out succinctly
in a previous Lattice conference proceedings contribuffgjn for a more detailed discussion,
cf. [10]. Summarizing briefly, the starting point is the famdental correlator

~ 1 _
PyneuprD.P.S.--.) = (RS G(0) T Z[0.nv.nv-+b.b q(b) [P (2.1)

where S denotes the spin of the hadron ahdstands for an arbitrary-matrix structure. The
staple-shaped gauge connectiénfollows straight-line paths connecting the positions giwe
its argument; the unit vectar thus specifies the direction of the staple, whenggsarametrizes
its length. The presence &¥ introduces divergences 'ﬁ:ﬂsubtr‘ additional to the wave function
renormalizations of the quark operators; these divergeaceordingly must ultimately be com-
pensated by additional “soft factors”, which are expectetle multiplicative and do not need to
be specified in detail here, since only appropriate ratiaghich they then presumably cancel will
ultimately be considered. In order to regularize rapidityethences, the staple directigrs taken
slightly off the light cone into the space-like region [5, @jith perturbative evolution equations
governing the approach to the light cone [7]. A useful pat@meharacterizing how closeis to
the light cone is the Collins-Soper evolution parameftet v-P/(|v||P|), in terms of which the

light cone is approached fafr—> o, The correlator (2.1) can be decomposed in terms of inviarian
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amplitudes&iB. Listing only the components relevant for the Sivers andrBéelders effects,

1 ] Aon i A
1 Gl

BT Do bt = iMneijbjAs — SAgg — imhAbiAggs + my[(b- P)A — my(br - Sr)|biArss (2.3)

whereA denotes the hadron helicity (i.65f = AP*/my, S~ = —Am,/2P"). These amplitudes
are useful in that they can be evaluated in any desired Loifeaine, including a frame which
is particularly suited for the lattice calculation. Spdiziag to TMDs integrated over momentum
fractionx, by considering specificalllg- P = 0, they serve to define the “generalized Sivers shift”

(k) Tu(B3,...) = —mhAgs(—b2,...) [Age(—b,..) = m Ff P02,/ O 2,.) (2.4)

where the right-hand expression introduces the notatieerins of Fourier-transformed TMD mo-
ments, for details, cf. [10]. In thbr — O limit, (2.4) formally represents the average transverse
momentumky, of unpolarized (U”) quarks orthogonal to the transversd {} spin of the hadron,
normalized to the corresponding number of valence quarkslogously, one defines the “gener-
alized Boer-Mulders shift”

(kyu(B?,...) = muAss(—b2,..) /Aos(—12,...) = mb M (B2, )/ 02, (25)

which in thebr — 0 limit formally represents the average transverse mommerduof quarks
polarized in the transverseT") x-direction orthogonal t&, in an unpolarized (3”) hadron, again
normalized to the corresponding number of valence quarks.rdtios (2.4) and (2.5) are designed
to cancel both multiplicative soft factors associated \lith gauge connectio#r as well as wave
function renormalizations attached to the quark operaiof®.1) at finite physical separatidn

3. Lattice evaluation and results

To access generalized shifts such as (2.4) and (2.5) weikticé QCD, one calculates hadron
matrix elements of the type (2.1) and then decomposes thienmivariant amplitudes, as given in
(2.2)-(2.3). For this to be possible, it is crucial to workarscheme where the four-vectdrand
v are generically space-like, for the following reason: Bypéoging a Euclidean time coordinate
to project out hadron ground states via Euclidean time éwowoiulattice QCD cannot straightfor-
wardly accomodate operators containing Minkowski timeasatfions. The operator of which one
takes matrix elements thus has to be defined at a single timig.ifloth b andv are space-like is
there no obstacle to boosting the problem to a Lorentz franvehich b andv are purely spatial,
and evaluatingd | in that frame. The results extracted for the invariant atagéisAg are then
immediately valid also in the original frame in which (2.1asvinitially defined, thus completing
the determination of quantities of the type (2.4) and (2.5).

Since, in a numerical lattice calculation, the staple extgmecessarily remains finite, two
extrapolations must be performed from the generated dataely, the one to infinite staple length,
n — o, and the extrapolation of the staple direction towards itjte bone,f — o0, Whereas the
former extrapolation is under control for a range of pararsetised in this work, the latter presents
a challenge, owing to the limited set of hadron momdntaccessible with sufficient statistical
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Figure 1. Dependence of the generalized Sivers shift on the stapémeat a fixedor andf, in a coarse
lattice mixed action calculation [10] (left) and a fine lagidomain wall fermion calculation (right).
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Figure 2: Generalized Sivers shift as a functiontsf in then — o SIDIS limit, at a fixedf, in a coarse
lattice mixed action calculation [10] (left) and a fine lagtidomain wall fermion calculation (right).
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Figure 3: Generalized Sivers shift as a functioncf)in then — o SIDIS limit, at a fixedbr, in a coarse
lattice mixed action calculation [10] (left) and a fine lagidomain wall fermion calculation (right).

accuracy. This issue has been investigated at length in [Th¢ present study focuses instead
on another aspect, namely, whether TMD ratios of the typ® @hd (2.5), which are designed to
cancel soft factors and multiplicative renormalizatiomstants, are indeed robust under changes
of the discretization scheme and lattice cutoff. Figs. T&spnt new data for the isovectoBivers

1in the isovectoru — d quark combination, diagrams with operator insertions stdhnected quark loops, which
have not been evaluated, cancel.
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Figure 4: Dependence of the generalized Boer-Mulders shift on thaestxtent at a fixetr andf, ina
coarse lattice mixed action calculation [10] (left) and &fiattice domain wall fermion calculation (right).
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Figure 5: Generalized Boer-Mulders shift as a functionbgfin the n — o SIDIS limit, at a fixedf, ina
coarse lattice mixed action calculation [10] (left) and &fiattice domain wall fermion calculation (right).
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Figure 6: Generalized Boer-Mulders shift as a functionfofn then — o SIDIS limit, at a fixedbr, in a
coarse lattice mixed action calculation [10] (left) and &fiattice domain wall fermion calculation (right).

and Boer-Mulders shifts (2.4) and (2.5) in the nucleon, il using a RBC/UKQCD 2+1-flavor
domain wall fermion ensemble with a lattice spacingact 0.084fm, corresponding to a pion
mass ofmy; = 297MeV. They are juxtaposed in Figs. 1-6 with correspondiatp previously
obtained [10] using domain wall valence quarks on a MILC &ater gauge ensemble with a
lattice spacing o = 0.12fm, corresponding to a pion masg = 518 MeV. Note, thus, that the
two ensembles differ significantly not only in discretipatischeme and lattice cutoff, but also in
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the pion mass. However, the previous mixed action study fd@@aled no significant dependence
of the observables investigated here on the pion mass betwee 518 MeV andn; = 369 MeV,
and therefore it is plausible to nevertheless view the coisa presented here primarily as a test
for the presence of large discretization scheme and lattiteff effects.

Fig. 1 displays the dependence of the Sivers shift (2.4) ersthple extent for a given quark
separatiorbt and a given staple direction characterize(f by he T-odd behavior of this observable
is evident, withn — oo corresponding to the SIDIS limit, wheregs— —o yields the DY limit.
The data level off to approach clearly identifiable plateashe staple length grows. The limiting
SIDIS and DY values, represented by the open symbols, argotatl by imposing antisymmetry in
n, allowing one to appropriately average tipe~ +oo plateau values. Fig. 2 summarizes the results
in the SIDIS limit for differentbr at a givenf, where the shaded area belfw | = 2a indicates the
region where the results may be significantly affected byefilattice cutoff effects. Finally, Fig. 3
summarizes the dependence of the Sivers shift on the C@liper evolution parametér, with
|br| kept fixed. Note that the total shift is represented by the blata points; the green data points
correspond to a certain partial contribution to the Sivéift svhich vanishes af =0, but domi-
nates the quantity at Iarg% comparison of the full Sivers shift with the partial cobtriion thus
can give an indication of convergence towards the Iafrgienit. For further details, cf. [10]. The
signal for the shifts quickly deteriorates as the nucleommatumP, and thusf, is increased. No
clear trend can be identified at the present level of accuméyises; connecting with perturbative
evolution equations at Iargféwill represent a challenge for the present approach.

Clearly, the results for the Sivers shift obtained on the émsembles are compatible, except
for deviations at small separatiofis |, where finite lattice cutoff effects are indeed expecteds Th
is observed in spite of the considerable differences betteeensembles in terms of discretization
scheme and lattice spacing (as well as pion mass, cf. corsruetiier above). Another comparison
focused on discretization and cutoff effects at essentieéd pion mass will be possible in follow-
up work employing a clover fermion ensemble at pion nmags= 317 MeV and lattice spacing=
0.114fm, generated by K. Orginos and collaborators in theedssh Lab lattice group. Preliminary
analysis of the corresponding data corroborates the fisgingsented here.

Figs. 4-6 present data for the Boer-Mulders shift (2.5) @galis to Figs. 1-3. The correspon-
dence between the data obtained on the two analyzed ensepelsésts. The relative uncertainties
in the case of the Boer-Mulders shift are somewhat larger ithéghe case of the Sivers shift. One
reason for this is that, if one separates theand d-quark contributions, the Sivers shifts in the
two cases are of opposite sign (thus reinforcing each oth#étau — d difference), whereas the
Boer-Mulders shifts are of the same sign, thus canceling etieer to some extent.

4. Summary and outlook

Within a continuing exploration of TMD calculations usirgftice QCD, the principal focus
of the present work is an empirical study of the lattice difzation and cutoff dependence of
TMD ratio observables of the type (2.4) and (2.5). TMDs arienéel via hadron matrix elements
of nonlocal operators containing staple-shaped gaugeections, cf. (2.1), such as to incorporate
final/initial state interactions (for the SIDIS/DY process respectively). In addition to renormal-
ization factors associated with the quark fields, the gawgeections call for the introduction of
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more intricate soft factors in order to effect their regidation and renormalization. While these
factors are expected to be multiplicative, no rigorousifigstion of this working assumption, in
particular in the lattice formulation, is available. Thaalgathered in the present work permit an
empirical assessment of whether TMD ratios of the type @) (2.5), defined such as to cancel
multiplicative renormalization and soft factors, indeethlve in a stable manner under a significant
change of the discretization scheme and cutoff. No suligtavdriation was detected in comparing
the results for the TMD ratios obtained using the two ensembhder consideration. It should be
noted that these two ensembles differ significantly not amthe discretization scheme and cutoff,
but also in the pion mass; however, preliminary results ffollow-up work using a clover fermion
ensemble at a pion mass of; = 317MeV and lattice spacing = 0.114fm, which provides a
more focused comparison with the domain wall fermion enserabalyzed here, corroborate the
findings of the present study.
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