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We discuss nonperturbative renormalisation of the leading-twist flavour non-singlet operators
needed for the calculation of the first and second moments of light-meson distribution ampli-
tudes. On the lattice we use a regularisation-independent symmetric (or non-exceptional) mo-
mentum scheme, RI/SMOM, which, for the second moment, allows us to include mixing with a
total-derivative operator. We calculate the conversion functions needed to connect the RI/SMOM
results to MSbar.
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1. Introduction

Parton distribution amplitudes (PDAs) are relevant for exclusive QCD processes at large mo-
mentum transfers, near the light cone. They provide process-independent nonperturbative informa-
tion on the bound-state structure of hadrons, in particular the momentum-fraction distribution of
partons in a particular Fock state of a hadron. They have been calculated in three main approaches:
extraction from experimental form factor data; QCD sum rules; lattice QCD.We are here concerned
with the last of these.

Low moments of PDAs can be computed from non-forward local matrix elements with mo-
mentum transferred at the operator insertion. For example, for a pseudoscalar meson P the first and
second moments ⟨�1⟩P and ⟨�2⟩P are determined by

⟨0| q̄a
�
5
↔

D�qb|P (p)⟩ = ⟨�1⟩P fP p�p�

⟨0| q̄a
�
5
↔

D�

↔

D�qb|P (p)⟩ = ⟨�2⟩P fP p�p�p�
where  means symmetrised and traceless in Lorentz indices Bare lattice operators need renormal-
isation and matching to a continuum scheme like MS. For the second moment, because there is
non-zero momentum transfer, there will be mixing of the double-covariant-derivative operator with
a double-total-derivative operator,

 q̄a
�
5
↔

D�

↔

D�qb and )�)�(q̄a
�
5qb)

Hence, on the lattice we will need to compute
⟨�1⟩MS =

ZD,D

ZA
⟨�1⟩bare and ⟨�2⟩MS =

ZDD,DD

ZA
⟨�2⟩bare +

ZDD,))

ZA

where ZD,D, ZDD,DD and ZDD,)) are renormalisation constants to be determined, ideally nonper-
turbatively (ZA is the renormalisation constant for the light-quark axial vector current, which we
determine elsewhere [1]).

2. Previous RBC/UKQCD calculation

In our previous work ([2, 3] and in preparation), we used two lattice spacings, a−1 = 1.73GeV
and 2.28GeV. Figure 1 shows results for the kaon 1st moment and pion 2nd moment. The kaon
1st moment has little lattice spacing dependence, while there is more visible a-dependence for the
pion second moment. However, in these calculations the mixing with the double total-derivative
operator is perturbative [3], since our previous nonperturbative renormalisation was performed in
the RI′/MOM scheme (see below) with zero momentum transfer at the operator. Where we had
both, the perturbative and nonperturbative renormalisation constants differed, as shown in table 1.

3. Nonperturbative renormalisation

We use a Rome–Southampton regularisation independent (RI) momentum subtraction (MOM)
scheme. For operator O, the renormalisation constant ZO is determined by

ΛOR =
1
Zq
ZO ΛOB
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Figure 1: Chiral extrapolations of results for the kaon 1st moment, left, and pion 2nd moment, right, at two
different lattice spacings: a−1 = 1.73GeV blue, 2.28GeV red. The 1st moment result, with nonperturbative
renormalisation, shows little lattice-spacing dependence. For the 2nd moment, where the double covari-
ant derivative operator is nonperturbatively renormalised but the total-derivative operator is perturbatively
renormalised, there is more a-dependence.

ZD,D∕ZA ZDD,DD∕ZA ZDD,))∕ZA

nonperturbative 1.50(2) 1.97(5) —
mean-field imp PT 1.28(4) 1.51(6) 0.015(4)

Table 1: Perturbative and nonperturbative renormalisation constants on the a−1 = 2.28GeV lattice with MS
scale � = 2GeV.

whereΛO is an amputated quark two-point functionwith an insertion ofO (Lorentz indices implicit).
The subscripts R and B denote renormalised and bare respectively. For operators which mix, as is
the case for the 2nd moment PDA calculation, ZO will be a matrix. Zq is the quark wavefunction
renormalisation constant.

We impose the renormalisation condition (or conditions for operators whichmix) at a particular
momentum configuration with associated scale �, satisfying ΛQCD ≪ � ≪ 1∕a. In the SMOM or
symmetric momentum scheme, in Euclidean space, the incoming quark momentum q, incoming
antiquark momentum p and momentum transfer q + p satisfy

q2 = p2 = (q + p)2 = �2, q ⋅ p = −�2∕2

as indicated in figure 2.
Previously we used the RI′/MOM scheme with an exceptionalmomentum choice q2 = p2 = �2

and no momentum transfer, q + p = 0. The SMOM scheme allows mixing with total derivative
operators (needed in our case), suppresses contamination from IR effects and is expected to be
better-behaved (or at least not worse behaved) in the perturbative series needed for conversion to
the MS scheme. Here we are concerned with the conversion functions from SMOM to MS for the
PDA 1st and 2nd moments. Evaluating those conversions is done in the continuum and the relevant
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q + p

qp

Figure 2: Momentum configuration for the SMOM scheme applied to a quark two-point function with op-
erator insertion.

calculations have been performed by J Gracey to 3 loops in MS and to 2 loops in SMOM [4, 5, 6, 7].
The amputated two-point quark Green functions are matrices in colour and spin indices and the
choice of how those are traced into the scalars ΛOR,B will be reflected in the precise values of the
conversion functions.

4. Operator basis and scalar coefficients

We use the following basis of C-eigenstate operators1:

X2 =  ̄
�
↔

D� 

)X2 = )�( ̄
� )

X3 =  ̄
�
↔

D�

↔

D� 

))X3 = )�)�( ̄
� )

)X3 = )�( ̄
�
↔

D� )

X2, )X2, )X3 are all multiplicatively renormalised while X3 and ))X3 mix. For the PDA 1st and
2nd moments we need to renormalise X2, X3 and ))X3, but we include the single total-derivative
operators ()X2,3) in order to make some checks: )X2 and ))X3 are total derivatives of vector
current and should have the same anomalous dimension; similarly, )X3 is a total derivative of X2.

Following Gracey [4, 5, 6, 7], we expand amputated quark two-point Green functions of these
operators in bases of Lorentz tensor structures with scalar coefficients. For example, for the first
moment operators (suppressing spin and colour indices):

Λ��(p, q)sym =
10
∑

i=1
P ��(i) (p, q)Σi(�

2)

Σi(�2) =
1
�2
Tr

[

MijP
��
(j) (p, q)Λ��(p, q)sym

]

where ‘sym’ means evaluated at an SMOM symmetric momentum configuration and P ��(i) (p, q) are
10 Lorentz tensors with

Nij =
1
�2
Tr

[

P ��(i) P(j)��
]

sym M = N−1 (4.1)
1Operators with and without 
5 renormalise in the same way if chiral symmetry is respected. Our lattice simulations

use a domain wall fermion action with good chiral symmetry properties.
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There are similar decompositions for bilinear and second moment operators with 6 and 14 Lorentz
structures respectively.

Gracey used a different basis of operators. Changing to the C-conserving basis above leads to
relations between Gracey’s MS anomalous dimensions which are all satisfied2. For the amputated
Green functions, charge-conjugation implies a set of relations between the scalar coefficients in our
basis. These are satisfied by the Gracey continuum calculations (after the change of basis) and by
lattice data for a unit gauge field. They are also well-satisfied by our lattice data at the two lattice
spacings.

5. SMOM renormalisation conditions

A specific SMOM renormalisation scheme is fixed by demanding that after tracing with some
‘projector’ P , the renormalised amputated Green function should give the tree-level result

1
Zq

Tr(ZOΛOB,symP ) = Tr(Λ
O
tree,symP )

We aim to chooseP ’s to respect the charge-conjugation properties of the operators and, for operators
which are total derivatives of vector current, to maintain the Ward identity.

For example, the SMOM renormalisation condition for the vector current [8]
1

12�2
ZV

Zq
Tr(k�Λ

�
V ,B∕k) = 1 where k = q + p

maintains the Ward identity k�Λ�V ,R = S−1R (−p) − S
−1
R (q), where SR is the renormalised quark

propagator. We choose renormalisation conditions for total derivatives of the vector current
Z)X2
Zq

Tr
[

(

k�k�
)

∕kΛ��)X2,B
]

= 9i(�2)2

Z))X3

Zq
Tr

[

(

k�k�k�
)

∕kΛ���))X3,B

]

= −6(�2)3

and confirm that the conversion functions from SMOM to MS for all three operators are then 1.
As another example, for the second moment the operator X3 =  ̄
�

↔

D�

↔

D� mixes with
))X3 = )�)�( ̄
� ). The tree-level matrix elements are

Λ
↔
D

↔
D

���(p, q)tree = −(q� − p�)(q� − p�)
� =
�2

3
(P3,��� + P1,��� − P2,���)

Λ))���(p, q)tree = −(q� + p�)(q� + p�)
� =
�2

3
(P3,��� + P1,��� + P2,���)

whereP1,2,3 are three of 14 possible Lorentz structures. To fix the renormalisation constantsZDD,DD
and ZDD,)) to get from the bare lattice results to SMOM, we impose renormalisation conditions
1
Zq

Tr
[

(

(MP )3 + (MP )1 − (MP )2
)

(ZDD,DDΛ
↔
D

↔
D

B +ZDD,))Λ))B )
]

= Tr
[(

(MP )3 + (MP )1 − (MP )2
)

Λ
↔
D

↔
D

tree
]

= �2

2In fact they determine one of the second moment anomalous dimensions to one higher power in g2. In the notation
of [7], the relation 
W3

11 + 

W3
12 − 


W3
22 = 0 fixes the (g2)3 term in 
W3

12 .
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1
Zq

Tr
[

(

(MP )3 + (MP )1 + (MP )2
)

(ZDD,DDΛ
↔
D

↔
D

B +ZDD,))Λ))B )
]

= Tr
[(

(MP )3 + (MP )1 + (MP )2
)

Λ
↔
D

↔
D

tree
]

= �2

3
In these expressions the trace is on spin and colour indices. There is also a summation on the
(suppressed) Lorentz indices. The notation (MP )i denotes the summationMijP(j) whereM is the
matrix defined in equation 4.1.

6. Conversion functions

Having specified SMOM renormalisation conditions, we need to evaluate the conversion func-
tions to give final results in MS. Suppose operators renormalised in SMOM and MS are related by
a (matrix) C ,

OMS = COR
The corresponding relation for amputated two-point quark Green functions with an insertion of O
is

ΛMS =
1
Cq
CΛR where Cq ≡

Zq,MS
Zq

Expand the Green function Λa for operator Oa in terms of tensors Pi with scalar coefficients Σai
Λa =

∑

i
ΣaiPi Σai = Tr

[

(MP )iΛa
]

Our renormalisation prescription is that tracing ΛRa with some projector PA gives the tree-level (or
other chosen) result, TaA

Tr
(

ΛRaPA
)

= TaA
We may need to choose several PA’s if the operators mix. Let NP

iA ≡ Tr(PiPA) and use ΛR =
CqC−1ΛMS to write

CqC
−1
ab Σ

MS
bi N

P
iA = TaA

Gracey’s MS results give the scalar coefficients ΣMS whileNP and T (and Cq) are also known. We
can then impose enough conditions to solve for the elements of C . Subsequently, combining C with
the Z’s determined by our SMOM renormalisation conditions allows us to convert from lattice to
MS at scale �. We can then use MS anomalous dimensions to scale to a common value, say 2GeV.

Once an SMOM renormalisation prescription has been fixed, the SMOM anomalous dimen-
sions can be found from


SMOM = C−1 
MS C − �
dC−1

d�
C

We close by presenting the conversion functions calculated for our choice of SMOM renormal-
isation prescription. Here a = g2∕16�2, � is the gauge parameter (which will be set to 0 since our
lattice Green functions are evaluated in Landau gauge) and Nf is the number of flavours. For the
first moment the non-zero elements of C are

C11 = 1 − (1.63903� + 5.12484)a − (3.8244�2 + 6.37866� − 12.1458Nf + 106.359)a2

C22 = 1

6
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The subscript indices 1 and 2 refer to X2 and )X2 respectively.
For the second moment the non-zero elements are
C11 = 1 − (2.18537� + 8.24516)a − (5.18357�2 + 2.38666� − 19.8008Nf + 156.444)a2

C12 = (0.138749� + 1.15755)a + (0.419338�2 + 1.95065� − 2.31945Nf + 20.0837)a2

C22 = 1
C33 = 1 − (1.63903� + 5.12484)a − (3.8244�2 + 6.37866� − 12.1458Nf + 106.359)a2

where now the indices 1, 2 and 3 refer toX3, ))X3 and )X3 respectively. TheCij are 1 for operators
which are total derivatives of the vector current. We also observe that )X3 is a total derivative ofX2
and has the same conversion coefficient (compare C11 for the first moment with C33 for the second
moment).

7. Summary

We are interested in calculating 1st and 2nd moments of PDAs with fully nonperturbative
renormalisation. This involves non-forward matrix elements, allowing mixing with total derivative
operators and demanding the use of an SMOM renormalisation scheme. Continuum calculations
exist [4, 5, 6, 7] to allow the needed conversion functions from SMOM to MS to be computed
once renormalisation conditions have been imposed. This enables a fully nonperturbative lattice
computation with continuum perturbation theory needed only for the final conversion to MS.
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