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Numerical studies of quantum field theories usually rely upon an accurate determination of
stochastically estimated correlation functions in order to extract information about the spectrum
of the theory and matrix elements of operators. The reliable determination of such correlators
is often hampered by an exponential degradation of signal/noise at late time separations. We
demonstrate that it is sometimes possible to achieve significant enhancements of signal/noise by
appropriately optimizing correlators with respect to the source and sink interpolating operators,
and highlight the large range of possibilities that are available for this task. The ideas are discussed
for both a toy model, and single hadron correlators in the context of quantum chromodynamics.
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Monte Carlo simulations of quantum field theories rely heavily upon the reliable stochastic
estimation of Euclidean space correlation functions. Two point correlators, for example, contain
information about the spectrum of the theory, whereas three point functions may be used to extract
information about matrix elements of operators. In practice, such correlators often exhibit an expo-
nential degradation of signal to noise at late times, making the extraction of properties of the system
challenging. The canonical example for such difficulties is the determination of the nucleon mass
from a two point correlation function. According to an argument by Lepage [1], the signal/noise of
the nucleon correlator decays at the rate mN− 3

2 mπ at late times, where mN and mπ are the nucleon
and pion mass, respectively.

In this work (for full details see [2]), we focus on the character of signal/noise for two-point
functions of the form

Ci j(τ) = 〈Ω|Ô ′i e−ĤτÔ†
j |Ω〉= ∑

n
Z′inZ∗jne−Enτ , (1)

where Ĥ is the Hamiltonian of the system, with eigenstates |n〉 and eigenvalues En, ordered such
that En ≤ En+1, and |Ω〉 is the vacuum state. The labels i = 1, · · · ,N′ and j = 1, · · · ,N specify
the various sink and source operators, Ô ′i and Ô j, taken to have like quantum numbers. Note
that by inserting a complete set of states, |n〉, the correlator can in turn be expressed as a sum of
exponentials, with overlap factors given by Z′in = 〈Ω|Ô ′i |n〉 and Z jn = 〈Ω|Ô j|n〉.

In a numerical simulation, one often constructs a stochastic estimate of the correlator, given by
the average, C = 〈C 〉, over an ensemble of individual correlators, C , measured on N background
field configurations generated by some Markov process. Let us consider a single correlator formed
by the inner product, ψ ′†Cψ , where ψ ′ and ψ are complex, unit norm vectors. These vectors are N′

and N dimensional, respectively, and specify a particular linear combination of interpolating opera-
tors at the source and sink. The signal to noise ratio for the estimate, up to a 1/

√
N proportionality

constant, is given by

θc(ψ
′,ψ) =

[
1

θ 2(ψ ′,ψ)
−1
]−1/2

, θ(ψ ′,ψ) =

∣∣∣ψ ′†Cψ

∣∣∣
σ(ψ ′,ψ)

, (2)

where

σ
2(ψ ′,ψ) =

(
ψ
′⊗ψ

′∗)†
Σ

2 (ψ⊗ψ
∗) , Σ

2 = 〈C ⊗C ∗〉 . (3)

Since in most cases of interest θc ≈ θ , we refer to both θc and θ as the “‘signal/noise”.
By studying the late-time exponential decay of the correlation functions, one is in principle

able to extract information about the low-lying spectrum of the theory. In particular, it is common
practice to consider the late-time behavior of the effective mass, defined as

me f f (τ) =−
1

∆τ
log

ψ ′†C(τ +∆τ)ψ

ψ ′†C(τ)ψ
→ E0 +

(
ψ ′†Z′1Z†

1ψ

ψ ′†Z′0Z†
0ψ

)
1− e−∆E1∆τ

∆τ
e−∆E1τ + · · · , (4)

for ∆E1 = E1−E0 and some ∆τ , often taken to be a single lattice spacing. For general choices of ψ ′

and ψ , the effective mass yields a constant, the ground state energy, up to exponentially suppressed
excited state contamination. By tuning the source and sink vectors so that they are orthogonal to
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Z1, and/or Z′1, one can reduce such contamination. Fig. 1 shows examples of an effective mass,
plotted for the nucleon two-point correlator, as a function of the time separation between source
and sink interpolating fields. Examples are shown for a Hermitian matrix of correlators with two
choices of ψ ′ = ψ: one that is optimized to produce an early plateau, and one that is not. In each
case, excited state contamination dominates at early times, a plateau corresponding to the ground
state emerges at intermediate times, and noise dominates at late times. In the same figure, we
plot corresponding effective masses for the signal/noise and find that they indeed tend toward the
expected value, mN − 3

2 mπ , at late times. Because of the finite temporal extent of the lattice, the
signal/noise degradation can in fact be even worse than this expectation [3].
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Figure 1: Effective mass plots for the nucleon correla-
tor (circles) and effective mass plots for the associated
signal noise (diamonds), for two different source and
sink interpolating fields.

In order to maximize the plateau re-
gion over which energies may be extracted
(via a least-squares fit), one has two options:
either reduce the signal/noise, thereby ex-
tending the plateau at late times, or alterna-
tively, find linear combinations of interpo-
lating operators which maximize the over-
lap onto energy eigenstates, thereby extend-
ing the plateau to earlier times. Increasing
the ensemble size can achieve the former, but
only with logarithmic improvement. Well
established methods exist for the latter; for
Hermitian correlators, these go by the names
“variational method” or “generalized eigen-
value problem” [4, 5, 6, 7]; in the case of
nonsymmetric correlators or correlators formed from a limited basis, the “matrix-Prony” or “gen-
eralized pencil-of-function” methods may be used [3, 8, 9, 10]. In the nucleon example shown
here, one finds that performing such an optimization indeed yields a plateau at earlier times, but
at the cost of enhanced statistical uncertainties compared to the typical un-optimized source. The
result illustrates how signal/noise is not only influenced by the ensemble size, but also the choice of
interpolating fields. Furthermore, it suggests an inherent incompatibility between reducing excited
state contamination at early times and reducing statistical uncertainties on the correlator at late
times. Since uncertainties on extracted energies depend on numerous factors, including the type of
fit, fit interval and uncertainties on the correlator itself, it is a priori unclear which strategy is ideal.

To gain further insight, it is instructive to imagine how the signal/noise at late times behaves as
a function of the interpolating fields. Consider, as one example, the signal/noise “landscape” as a
function of the sink vector, ψ ′, for some fixed source vector ψ . For the moment, let us forget that ψ ′

has unit norm, and allow the signal/noise to be defined on R2N′ . There exists a 2N′−2 dimensional
subspace, W , for which θ(ψ ′,ψ) exactly vanishes, and it is given by the set of ψ ′ orthogonal to Cψ .
Note that this subspace is continuously connected to the origin, ψ ′ = 0. The unit norm constraint
confines ψ ′ to a (2N′−1)-sphere (S) embedded within R2N′ , and which intersects W . A schematic
of this geometry is provided in Fig. 2.

In Fig. 3 (left), we show a patch of the signal/noise landscape defined on S. The eigenstate-
optimized sink vector can lie anywhere on the domain, such as at point (I) in the figure. Since S
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is compact, one expects a global maximum of the signal/noise, such as point (IV ), at some other
location on the domain. One can show that these two points are continuously connected along a
path of steepest ascent, passing through the intermediate points (II) and (III). Generally speaking,
the overlap between the vectors (I) and (IV), characterized by the overlap angle ω (indicated in
Fig. 2), can be either large or small, and is completely independent of the change in the signal/noise
between the two points. The implications of this observation are rather intriguing: a correlator
obtained by using the eigenstate-optimized sink vector (I) can have arbitrarily poor signal/noise
compared to that of (IV). Furthermore, point (I) may lie arbitrarily close to S ∩W , where the
signal/noise vanishes. In perhaps the most severe of unfortunate scenarios (not shown in the figure),
point (I) may even lie at the bottom of a precipice, whereas point (IV) may lie at the top, only a short
distance away as measured by the overlap angle ω . In that scenario, an enormous enhancement in
signal/noise could be possible, going from (I) to (IV), while introducing only a tiny amount of
additional excited state contamination to the correlator. The range of possibilities is vast, and
highly dependent on both the system under study and basis of interpolating operators involved.

I

II
III

IV

S \ W

W

!

S

Figure 2: Signal/noise landscape as a function of ψ ′,
for a fixed ψ . Although not shown, there exist one
“flat direction” on this landscape, corresponding to
phase rotations of ψ ′.

Given the potentially nontrivial nature
of the landscape, it is important to consider
the interplay between excited state contami-
nation and signal/noise in correlators, partic-
ularly as one travels along the path of steep-
est ascent. A schematic example of sig-
nal/noise, as a function of ω , is provided in
Fig. 3 (right) and corresponds to the route of
steepest ascent shown in Fig. 3 (left). Al-
though point (IV) yields the greatest sig-
nal/noise enhancement for the correlator in
this example, smaller uncertainties in the ex-
tracted energies may be possible at point
(III), corresponding to a significantly smaller
ω , yet only a moderately diminished θ .

Although the arguments presented thus far have been heuristic, it is possible to make the
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Figure 3: Left: Signal/noise landscape on a patch of S, displayed in Fig. 2. Right: Signal/noise as a function
of the overlap angle ω along a path of steepest ascent from point (I) to point (IV).
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Figure 4: Left: Density plot of the normalized signal/noise ratio θ̄n(ω,δ ) as a function of the sink param-
eterization angles (ω,δ ), for Rn = 4. Right: Signal/noise as a function of xn(ω), for various values of Rn.
Dashed curve in each plot corresponds to the same values of Rn and δn.

analysis explicit. Let us begin by considering an idealized scenario of an arbitrary two-state system.
We consider a correlation function in the eigenbasis of the Hamiltonian, and a source ψn (n = 0,1),
which has perfect overlap onto the eigenstate |n〉. The correlator ψ ′†C(τ)ψn is therefore a pure
exponential, with a decay rate En. We may fully parameterize the sink vector, up to an overall
irrelevant phase factor, by ψ ′(ω,δ ) = (cos(ω),sin(ω)eiδ ), where ω ∈ [0,π), and δ ∈ [−π/2,π/2).
Given a fixed, ψn, let us define (ωn,δn) to be the critical angles at which the signal/noise ratio is
maximized. Then as a function of (ω,δ ), one can prove on general grounds that the normalized
signal/noise ratio, θ̄n(ω,δ )≡ θ(ψ ′(ω,δ ),ψn)/θ(ψ ′(ωn,δn),ψn), has the functional form

θ̄n(ω,δ ) =
1√

Rn +(Rn−1)xn(ω) [xn(ω)−2cos(δ −δn)]
, (5)

where θ(ψ ′(ωn,δn),ψn)≡
√

Rnθ(ψn,ψn), and

x0(ω) =
tanω

tanω0
, x1(ω) =

tanω

tanω1
. (6)

We may interpret the parameter
√

Rn ≥ 1 as the amount of enhancement in the signal/noise for
a correlator constructed using the sink ψ ′(ωn,δn), compared to one constructed using the sink
ψn. The parameter xn(ω) is zero when the sink vector equals the source vector, and unity when
the signal/noise is maximum. Interestingly, the functional form of Eq. 5 is the square-root of the
Breit-Wigner formula centered about xn(ω) = 1, and with a half-width at half maximum given by
(Rn−1)−1/2. The behavior of Eq. 5 is shown in Fig. 4 for various choices of Rn.

As previously noted, Rn and ωn are independent parameters, and as such, it is possible for
a system to possess a very large Rn and a very small ωn, thus realizing the “precipice scenario”
previously discussed. The toy model analysis presented here can be extended to the case where
source and sink vectors are equal and parameterized by (ω,δ ). In that case, an additional time-
dependent parameter enters into the parameterization of the signal/noise, which provides a measure
of the amount of excited state contamination present at the global maximum. In the late time
limit, this parameter vanished exponentially, corresponding to ground state domination, and the
functional form of the normalized signal/noise tends to the square of Eq. 5. At intermediate times,
a variety of interesting signal/noise enhancement scenarios are also possible [2].
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Figure 5: Left: Extracted energies for the pion (π), proton (p), delta baryon (∆), rho meson ground (ρ)
and first excited (ρ?) states. Energies were obtained from eigenstate and signal/noise optimized correlators.
Right: A comparison of the corresponding relative errors in the extracted energies.

Let us finally turn to a realistic application of the ideas discussed here, focusing in particular
on single hadron correlation functions in quantum chromodynamics (QCD). Here, we determined
the grounds state energies of the pion, proton and delta baryon, and the ground and first excited
state energies of the rho meson. The pion, proton and delta baryon energies were extracted from
approximately Hermitian 5×5 correlator matrices, closely related to those of [8], whereas the rho
meson energies were extracted from 26×26 matrices used in [11]. All correlators were measured
on anisotropic gauge field configurations generated by the Hadron Spectrum Collaboration using
a 2 + 1 flavor tadpole-improved clover fermion action and a Symanzik-improved gauge action
[12, 13]. The rho meson correlators were measured on 243×128 lattices, and the remainder were
measured on 203×128 lattices. All lattices were generated with an anisotropy bs/bτ ≈ 3.5, where
bs = 0.1227(8) fm and bτ are the spatial and temporal lattice spacings (hereafter set to unity).
Quark masses for these ensembles correspond to a pion mass, mπ ≈ 390 MeV, and kaon mass,
mK ≈ 546 MeV. Pion, proton and delta baryon correlators were computed on an N = 305 ensemble
using O(30) randomly placed Gaussian-smeared sources and zero-momentum projected Gaussian-
smeared sinks, creating a stochastically approximated wall source. Rho meson correlators were
computed on an N = 566 ensemble, and constructed from zero-momentum projected operators
belonging to the irreducible representation, T−1 , of the octahedral group with parity.

Multi-exponential least-squares fits were performed for the correlators at various locations
along a path of steepest ascent on two signal/noise landscapes. One landscape was defined hold-
ing the source fixed and allowing the sink to vary, whereas the second was defined by holding
the source and sink equal, and allowing them to vary simultaneously. In each case, the trajectory
started at a point where overlap with an eigenstate was maximum (eigenstate optimized), and ended
at a point where the signal/noise was maximum (signal/noise optimized). Fits were then performed
over multiple temporal intervals while holding the upper limit of the interval fixed; fits satisfy-
ing a χ2/d.o. f ≤ 1.1 were deemed acceptable. Among the acceptable fits, ones corresponding to
the largest fit interval were selected and compared for various points along the trajectory and for
each fit model (i.e., one-, two-, and three-exponentials). Fig. 5 provides a comparison of the best
fit results among all eigenstate optimized and signal/noise optimized correlators (left), and their
associated relative errors (right). With exception to the excited rho state, which possessed signifi-
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cant systematic uncertainties associated with the fit interval, all extracted energies were statistically
consistent. In most cases, only a modest reduction of uncertainties for extracted energies is evident
for the signal/noise optimized correlators. However, in the case of the delta baryon, a three-fold
reduction was achieved.

The variety of outcomes achieved for single hadrons illustrates an inherent dependence of the
proposed methods on both the properties of the system and choice of operator basis. It would
be particularly interesting to explore whether expanding the basis of operators (particularly at the
sink, where the task is computationally inexpensive) might improve the outcome of these results. It
may also be profitable to include operators with different quantum numbers in correlator matrices;
although such operators would contribute nothing to the signal, they may lead to nontrivial cancel-
lations in the noise (i.e., Eq. 3). Finally, the ideas presented here are quite general, and may prove
useful for analyzing multi-nucleon correlators, three-point functions and disconnected diagrams.
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