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1. Introduction

G2-QCD is a QCD-like theory in which the gauge group SU(3) of strong interactions is replaced by

the exceptional Lie group G2. The theory is a gauge theory with fermionic baryons and fundamental

quarks [1,2] and it can be simulated without sign problem at finite density and temperature. Unlike

other QCD-like theories such as adjoint QCD or two color QCD, for example, its properties in

the quenched case are very similar to those of QCD [3–8]. Although the center of G2 is trivial, it

shows a first order deconfinement transition which has quite interesting implications for the role of

the center symmetry in QCD as reviewed in [9] for Lattice 2012.

In this contribution we briefly summarize our previous results [10] for the hadron spectrum in

the vacuum and the phase structure at zero temperature as seen in the quark density from lattice

simulations on rather small 83 × 16 lattices in Sections 2 and 3. The observed structures in the

density over the chemical potential can thereby be related to a corresponding hierarchy of mass

scales in the baryon spectrum. In particular, one observes thresholds in the baryon density at

values of the chemical potential that correspond to the pseudo-Goldstone scalar diquark scale,

an intermediate pseudo-scalar and vector diquark scale, and roughly the fermionic baryon scale

set by the G2-nucleons and delta baryons. In Section 4 we furthermore present results from our

latest simulations in which we have accumulated evidence for a zero-temperature first-order phase

transition to what might be called G2-nuclear matter.

The most important difference to QCD is the existence of diquarks in the hadronic spectrum.

The lightest two diquark states are the pseudo-Goldstone bosons of chiral symmetry breaking, and

their quantum numbers differ only by charge conjugation. In order to investigate chiral symmetry

breaking in detail we add diquark source terms to disentangle the charge conjugation symmetry.

Therefore we have to use Majorana fermions in the simulations. In Section 5 we review the formu-

lation of G2-QCD in terms of Majorana fermions and discuss the chiral properties in the presence

of diquark sources in more detail. First preliminary results of our simulations at finite temperature

and density are shown in Sections 6 and 7.

2. Chiral symmetry and baryon number in G2-QCD

The Euclidean action of Nf = 1 flavour G2-QCD with quark chemical potential µ for baryons reads

S =

∫

d4x

{

−
1

4
trFµνFµν + Ψ̄D[A,m,µ ]Ψ

}

with

D[A,m,µ ] =γµ(∂µ −gAµ)−m+ γ0µ ,

(2.1)

where the gauge group is the exceptional Lie group G2, and γµ = γ†
µ are the Euclidean γ-matrices.

The fundamental representations of G2 are 7-dimensional and 14-dimensional, the latter coinciding

with the adjoint representation. Since G2 is a subgroup of SO(7), all representations are real. The

Dirac operator satisfies

D(µ)† γ5 = γ5 D(−µ∗) and D(µ)∗ T = T D(µ∗) (2.2)

with T = Cγ5, T ∗ T = −1, T † = T−1 and charge conjugation matrix C. If such a unitary opera-

tor T exists then the eigenvalues of the Dirac operator come in complex conjugate pairs, all real
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Figure 1: Pattern of chiral symmetry breaking in G2-QCD.

eigenvalues are doubly degenerate [11, 12] and thus

detD[A,m,µ ]≥ 0 for µ ∈R. (2.3)

G2-QCD with a single Dirac flavour possesses an extended chiral symmetry [11] compared to

QCD. The action is invariant under the SO(2)V vector transformations and the usual axial trans-

formations leading to a U(2) symmetry group, in agreement with the results in [1]. Following the

same arguments as in QCD it is expected that the axial U(1) is broken by the axial anomaly such

that only a SU(2)×Z(2)B chiral symmetry remains. In the presence of a non-vanishing Dirac

mass term (or a non-vanishing chiral condensate) the theory is no longer invariant under the axial

transformations. Therefore the non-anomalous chiral symmetry is expected to be broken explicitly

(or spontaneously) to its maximal vector subgroup,

SU(2)⊗Z(2)B 7→ SO(2)V⊗Z(2)B, (2.4)

The remaining chiral symmetry at finite baryon chemical potential is the same as in QCD,

SU(2)⊗Z(2)B 7→U(1)B (2.5)

The final pattern of chiral symmetry breaking of G2-QCD is shown in Figure 1. If chiral symmetry

is spontaneously broken, the axial chiral multiplet becomes massless, according to the Goldstone

theorem. The following operators generate the two Goldstone bosons:

d(0++) = Ψ̄Cγ5Ψ− Ψ̄γ5ΨC and d(0+−) = Ψ̄Cγ5Ψ+ Ψ̄γ5ΨC. (2.6)

They have quark number nq = 2 and hence also carry a baryon number of nB = 2/3, if baryon

number counts the difference of quarks and anti-quarks per G2-nucleon as in QCD. The Goldstone

bosons in G2-QCD are scalar diquarks instead of pseudoscalar mesons as in QCD. As long as we

do not introduce diquark sources, d(0++) and d(0+−) have the same mass. In Section 5 below we

also introduce the corresponding diquark source terms, however, in order to disentangle states with

opposite charge quantum number and investigate chiral symmetry breaking more closely.
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3. Spectroscopy and the phase diagram at zero temperature

The possible quark and gluon content of (colorless) bound states is determined by the tensor prod-

ucts of the appropiate representations of the gauge group G2. Quarks in G2 transform under the

7-dimensional fundamental representation, gluons under the 14-dimensional fundamental (and at

the same time adjoint) representation. An overview over possible bound states can be found in [10].

We expect to find bound states for every integer quark number nq. Mesons have nq = 0, diquarks

nq = 2, and nucleons nq = 3. In addition, there are more exotic bound states of gluons and quarks,

for example a hybrid with nq = 1. In the following we give an overview over the bound states

considered here, where u and d denote flavours of Dirac fermions. For the nucleons N and the pion

π we make use of the partially quenched approximation in our one-flavour simulations. Table 1

shows bound states that are also present in QCD while Table 2 shows the diquarks. In all tables

Name O T J P C

π ūγ5d SASS 0 - +

η ūγ5u SASS 0 - +

Name O T J P C

N T abc(ūCa γ5db)uc SAAA 1/2 ± ±

∆ T abc(ūCa γµub)uc SSAS 3/2 ± ±

Table 1: Bound states of G2-QCD with 2 flavours for baryon number nB = 0 (left) and baryon number

nB = 1, i.e. quark number nq = 3 (right). For details see text.

Name O T J P C

d(0++) ūCγ5u+ c.c. SASS 0 + +

d(0+−) ūCγ5u− c.c. SASS 0 + -

d(0−+) ūCu+ c.c. SASS 0 - +

d(0−−) ūCu− c.c. SASS 0 - -

d(1++) ūCγµd − d̄Cγµu+ c.c. SSSA 1 + +

d(1+−) ūCγµd − d̄Cγµu− c.c. SSSA 1 + -

d(1−+) ūCγ5γµd − d̄Cγ5γµu+ c.c. SSSA 1 - +

d(1−−) ūCγ5γµd − d̄Cγ5γµu− c.c. SSSA 1 - -

Table 2: Bound states with baryon number nB = 2/3, i.e. quark number nq = 2.

O is the interpolating operator used to extract the mass in simulations, the string T represents the

behaviour of the wave function under change of position, spin, colour and flavour (S stands for

symmetric, A for anti-symmetric), and J, P, C are the spin, parity and charge conjugation quantum

numbers. The difference between the η and the diquark correlation function is only the discon-

nected contribution. Therefore, the diquark with positive parity has the same mass a the pion with

negative parity, md(0+) = mπ(0−). In [10] it is shown that for every diquark there is a flavour non-

singlet meson with the same mass but opposite parity. In the following we discuss two different

ensembles with lattice parameters as listed in Table 3. A physical scale is set by the proton mass,

mN = 938 MeV. The mass spectrum for both ensembles is shown in Figure 2. In the heavy en-

semble the diquark masses and all parity even and odd states are almost degenerate. In the light

ensemble the diquark masses are no longer degenerate. We observe a significant mass splitting
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Ensemble β κ md(0+)a mNa md(0+) [MeV] a [fm] a−1 [MeV] MC

Heavy 1.05 0.147 0.59(2) 1.70(9) 326 0.357(33) 552(50) 7K

Light 0.96 0.159 0.43(2) 1.63(13) 247 0.343(45) 575(75) 5K

Table 3: Parameters for the two different ensembles. All results are from 83 × 16 lattices.

between parity even and odd states as well as between scalar and vector diquarks. Especially the

Goldstone boson becomes the lightest state, with the η also being somewhat heavier. For the nu-

cleons we also observe different masses for parity even and odd states and the spin 1/2 and spin

3/2 representations. In particuclar, we find three clearly different scales in the light spectrum: a

pseudo-Goldstone scale, an intermediate boson scale set by the remaining diquarks, and the nu-

cleon scale set by the N and ∆ masses. This mass hierarchy of the spectrum seems to be reflected

in various structures of the quark density at zero temperature which one might thus attribute to

different bosonic and fermionic phases at finite density, see Figure 3. With increasing chemical

potential, the quark number density first remains consistent with zero until it very quickly rises

to a very small but nonzero value. When we compare the critical chemical potential µc for this

onset transition to the mass of the lightest baryon md(0+), the pseudo-Goldstone 0+ diquark in our

case, we find that numerically very good agreement with the expectation from the Silver Blaze

property, i.e. µc = md(0+)/2. The ground state changes from the vacuum to a finite-density ground

state only when the quark chemical potential reaches the mass of the lightest baryon divided by its

quark number so that the corresponding excitation energy vanishes. For bosonic excitations one

might expect Bose-Einstein-condensation in a continuous second-order quantum phase transition

at µc = md(0+)/2, without binding energy, and our data is certainly consistent with that. For larger

values of the chemical potential plateaus develop where the quark number density remains almost

constant. Especially in the light ensemble, the step towards the second plateau conicides with the

mass of the heavier bosonic diquark states divided by their quark number. It appears that the two

bosonic baryon mass scales are not sufficiently separated from each other to resolve these two

distinct transitions in the heavier ensemble.

At around aµ = 0.6 for the heavy ensemble and aµ = 0.55 for the light ensemble the quark
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Figure 2: Mass spectrum for the heavy (left) and light (right) ensemble in G2-QCD.
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Figure 3: Quark number density for the heavy (left) and light (right) ensemble in G2-QCD at finite density

and zero temperature.

number density starts increasing again and no further plateau is observed. This transition appears

to coincide with the mass scale of nucleon and ∆ divided by three. In both ensembles the general

pattern thus seems to be that the various transitions in the quark number density are related to

the various baryon masses in units of their quark number. While for bosonic baryons the density

bends towards the zero-axis with plateaus forming after each transition, at the scale of the fermionic

baryons the quark number density is convex, as seen most clearly in the light ensemble with better

separation of scales, and continues to further increase with increasing chemical potential until

saturation sets in, eventually, when the lattice starts to get filled with the maximum number of

quarks per site, i.e. at a3nq = 14 here. This clearly is a lattice artifact beyond the range of any

hadronic interpretation of the density and it is therefore not shown here again, see [10].

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.30 0.32 0.34 0.36 0.38 0.40 0.42 0.44 0.46

180 200 220 240 260

nq

aµ

µ in MeV

Figure 4: Quark number density for the light ensemble in the vicinity of the transition.
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4. Evidence of a first order nuclear matter transition

In both ensembles we observe a strong transition at aµ ≈ 0.52 (heavy ensemble) and aµ ≈ 0.38

(light ensemble) that does not appear to correpond to any of our spectroscopic states. In Figure 4

we show the vicinity of this transition in the light ensemble in more detail. The quark number

density rises between aµ = 0.36 and aµ = 0.40 from a lower value nq ≈ 0.010 to a higher value

nq ≈ 0.025. In Figure 5 we show the quark number density as a function of Monte-Carlo time and

observe tunneling between these two states. This might indicate that there is a first-order phase

transition at aµ ≈ 0.38 in the phase diagram at zero temperature. Whether this phase transition is

indeed the analogue of the liquid-gas transition of nuclear matter as expected in QCD remains to

be shown by further simulations. If this is the case, then either the binding energy per nucleon is

comparatively large or the masses of nucleon and ∆ change with density in the regime of the finite

bosonic baryon density in the ground state before this transition which is not possible in QCD.
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Figure 5: Quark number density as a function of Monte-Carlo time for different values of chemical potential.

From left to right in the upper row aµ = 0.36, aµ = 0.37 and aµ = 0.38 and in the lower row aµ = 0.39,

aµ = 0.40 and aµ = 0.41.

5. Simulations of G2-QCD with Majorana fermions

In the present section we discuss the introduction of diquark sources in G2-QCD for two reasons:

First, on larger lattices and especially for values of the chemical potential in the vicinity of the

first order transition the simulations become more and more expensive. An obvious reason for this

might be the presence of very light diquark excitations in the simulations in this region of the phase

diagram. With the introduction of diquark source terms simulations should become more feasible.

Secondly, we would eventually like to resolve the complete diquark spectrum in order to investigate

chiral symmetry breaking at finite density. Any diquark source necessarily consists of an operator

7
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with quark number nq = 2 and therefore contains a pair of charge conjugated Dirac spinors Ψ for

the quarks. In order to integrate over the fermion fields in the path integral, however, one needs

a bilinear expression in Ψ̄ and Ψ. Unlike two-color QCD, however, for a single flavor of Dirac

fermions it is then necessary to introduce corresponding Majorana fermions in the simulations.

Since the gauge fields in G2 satisfy AT
µ = −Aµ =−Aa

µTa it is possible to rewrite the matter part of

the action in (2.1) as a sum over 2 for µ = 0 at first uncoupled Majorana spinors λ = (χ ,η),

S[Ψ,A] =

∫

d4xΨ̄
(

γµ(∂µ −gAµ)−m
)

Ψ =

∫

d4x λ̄
(

γµ(∂µ −gAµ)−m
)

λ (5.1)

Here λ obeys the Majorana condition λC =Cλ̄T = λ , λ̄C = −λTC−1 = λ̄ , and it is related to the

Dirac spinor as Ψ = χ + iη , Ψ̄ = χ̄ − iη̄ , ΨC = χ − iη and Ψ̄C = χ̄ + i η̄ . The (baryon) chemical

potential µ is an off-diagonal term in Majorana flavour space such that

L =Ψ̄D(m,µ)Ψ = λ̄ M(m,µ)λ with

D(m,µ) = /D−m+ γ0 µ and M(m,µ) = ( /D−m)σ0 −µγ0σ2

(5.2)

where σ0 = 1 and the Pauli matrix σ2 act on the 2 Majorana flavours χ and η which are now

coupled to each other by the offdiagonal µσ2-term. Integration in the path integral over the Majo-

rana fermions leads to the Pfaffian instead of the fermion determinant and we can proove that the

Pfaffian is positive as expected.

It is possible to introduce two different diquark sources in G2-QCD, one for the scalar (Lγ5
)

and one for the pseudoscalar diquarks (L
1

),

Lγ5
(J̃) =

1

2

(

J̃Ψ̄Cγ5Ψ− J̃∗Ψ̄γ5ΨC

)

, L
1

(J) =
1

2

(

JΨ̄CΨ+ J∗Ψ̄ΨC

)

. (5.3)

In the Majorana decomposition these terms read (J = J1 + iJ2, J̃ = J̃1 + iJ̃2)

Lγ5
=i

(

χ̄

η̄

)(

J2 J1

J1 −J2

)

γ5

(

χ

η

)

= i λ̄
(

J̃1σ1 + J2σ3

)

γ5 λ ,

L
1

=

(

χ̄

η̄

)(

J1 −J2

−J2 −J1

)(

χ

η

)

= λ̄ (J1σ3 − J2σ1)λ .

(5.4)

The Lagrange density for the matter part of the theory is then given by

L = λ̄
[

( /D−m−m5γ5)σ0 −µγ0σ2 +(iJ̃1γ5 − J2)σ1 +(J1 + iJ̃2γ5)σ3

]

λ . (5.5)

Similar to the case without diquark sources one can show that the Pfaffian is real if J2 = J̃2 = 0, but it

is not necessarily positive any longer. Nevertheless, we expect that for small values of the chemical

potential the sign problem is not present and this expectation is confirmed in our simulations. The

first derivatives of the partition function with respect to J, J̃ and m define the chiral and diquark

condensates,

Σ =
1

V

∂ ln(Z(m,J, J̃))

∂m
=
〈

Ψ̄Ψ
〉

= 〈χ̄χ + η̄η〉 ,

Σ1 =
1

V

∂ ln(Z(m,J, J̃))

∂J
=
〈

Ψ̄CΨ+ c.c.
〉

= 〈χ̄χ − η̄η〉 ,

Σ5 =
1

V

∂ ln(Z(m,J, J̃))

∂ J̃
=
〈

Ψ̄Cγ5Ψ+ c.c.
〉

= i〈χ̄γ5η + η̄γ5χ〉 ,

(5.6)
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Operator Parameter OA,1 OA,3 OV,2 Goldstone bosons Massive state

λ̄λ m x x X d(0++) , d(0+−) f (0++)

λ̄ γ5σ1λ J̃1 x X x d(0++) , f (0++) d(0+−)

λ̄ γ5σ3λ J̃2 X x x d(0+−) , f (0++) d(0++)

λ̄ γ5λ m5 x x X d(0−+) , d(0−−) η(0−+)

λ̄σ1λ J2 x X x d(0−+) , η(0−+) d(0−−)

λ̄σ3λ J1 X x x d(0−−) , η(0−+) d(0−+)

λ̄ γ0σ2λ µ x x X - -

Table 4: The table shows the transformation behaviour of bilinears under the chiral transformations, X

means invariant, x not invariant. In the last two columns the corresponding Goldstone bosons and the

massive states are shown.

that we investigate in the following. For a single Dirac flavour the chiral symmetry is SU(2)L=R∗ .

The generators for the symmetry transformations are given by Pauli matrices

TV = 1⊗σ2 , TA = γ5 ⊗{σ1,σ3} , (5.7)

and the chiral transformations read

OA,1λ =eiα γ5 σ1 λ and λ̄ → λ̄ eiα γ5 σ1

OA,3λ =eiα γ5 σ3 λ and λ̄ → λ̄ eiα γ5 σ3

OV,2λ =eiα σ2 λ and λ̄ → λ̄ e−iα σ2 .

(5.8)

Possible bilinear bound states for a single Dirac flavour are

d(0+−) =λ̄ γ5σ1λ = χ̄γ5η , d(0++) = λ̄ γ5σ3λ = χ̄γ5χ − η̄γ5η ,

d(0−−) =λ̄σ1λ = χ̄η , d(0−+) = λ̄ σ3λ = χ̄χ − η̄η ,

f (0++) =λ̄λ = χ̄χ + η̄η , η(0−+) = λ̄ γ5λ = χ̄γ5χ + η̄γ5η .

(5.9)

Table 4 shows their behaviour under the chiral transformations together with the corresponding

Goldstone bosons. Under the chiral SU(2) these biliners decompose as

2̄⊗2 = 3⊕1, (5.10)

and we can identify a positive and negative parity triplet,

(

f (0++), d(0++), d(0+−)
)

and
(

η(0−+), d(0−+), d(0−−)
)

. (5.11)

Since the negative parity multiplet obtains a contribution to its mass from the chiral anomaly we

will set the corresponding sources J1 = J2 = m5 = 0. Under a general (infinitesimal) chiral trans-

formation δλ = i(αγ5σ1 +βγ5σ2 + γσ2)λ the Lagrangian density transforms as

δL = 2iλ̄
(

γ5σ1(−αm+ γ J̃2)+ γ5σ3(−βm− γ J̃1)+ i(α J̃1 +β J̃2)+ iµγ0γ5(βσ1 −ασ2)
)

λ ,

(5.12)

9
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µ m J̃1,2 Solution Symmetry Generator

X X X SU(2) T = {γ5σ1,γ5σ3,σ2}

X x X α = β = 0 U(1) T = σ2

X X x γ = 0 ,α J̃1 =−β J̃2 U(1) T = γ5(J̃2σ1 − J̃1σ3)

X x x αm = γ J̃2,βm =−γ J̃1 U(1) T = γ5(J̃2σ1 − J̃1 σ3)+mσ2

x X X α = β = 0 U(1) T = σ2

x x X α = β = 0 U(1) T = σ2

x X x α = β = γ = 0 - -

x x x α = β = γ = 0 - -

Table 5: Chiral symmetry of G2-QCD in the presence of diquark sources and chemical potential,X means

= 0, x means 6= 0.

and we obtain the following system of equations for the invariance of the Lagrangian

µα = 0 , µβ = 0 , αm = γ J̃2 , βm =−γ J̃1 , α J̃1 =−β J̃2. (5.13)

Possible solutions are shown in Table 5. The Goldstone bosons are then linear combinations in

the corresponding multiplet. An illustration of the chiral symmetry breaking is shown in Figure 6.

At vanishing chemical potential, any linear combination of mass m and diquark sources J̃1 and J̃2

SU(2)L=R∗

U(1)B

U(1)B

U(1)B

U(1)B

-

m

lin(m, J̃1, J̃2)

lin(J̃1, J̃2)

µ µ

m

µ

lin(m, J̃1, J̃2)

lin(J̃1, J̃2)

Figure 6: Chiral symmetry breaking in G2-QCD in the presence of diquark sources.

breaks the chiral symmetry down to a U(1) subgroup and baryon number is conserved. The direc-

tion (generator) for the invariant subgroup U(1) of the SU(2) symmetry is shown in Table 5. Since

the mass m and the chemical potential µ break the SU(2) in the same direction, baryon number is

10
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Figure 7: Chiral condensate, diquark condensate and quark number density as a function of the diquark

source coupling J̃1 in the vacuum at T = µ = 0.

explicilty broken at finite chemical potential by any linear combination of diquark sources. Thus

in our simulations at zero density we expect no qualitative difference between a fermion mass term

and a diquark source term.

6. Results at finite temperature

Our first aim is to investigate spontaneous chiral symmetry breaking at finite temperature for µ = 0.

In our simulations with Dirac fermions the corresponding signal in the chiral condensate remained

rather inconclusive when measured across the deconfinement transition as observed in the Polyakov

loop [2]. The reason for the weak transition in the chiral condensate was probably the explicit

breaking due to the Wilson mass. The first simulations with Majorana fermions at zero temper-

ature have been performed on a 83 × 16 lattice with β = 0.96 and κ = 0.151. Compared to the

ensembles discussed for Dirac fermions before, this corresponds to very heavy quarks (diquarks).

For vanishing chemical potential the Pfaffian is again positive and simulations can be done. In

Figure 7 the chiral condensate, the diquark condensate and the quark number density are shown as

a function of the diquark source J̃1. As expected, with increasing diquark source (and fixed mass

m), the chiral condensate rotates into a diquark condensate. Furthermore, the quark number den-

sity vanishes, indicating an unbroken U(1) subgroup such that baryon number is still conserved.

Our simulations at finite temperature have been performed on a 123 × 6 lattice with β = 0.96 and

κ = 0.156. In Figure 8, the chiral condensate, diquark condensate and the Polyakov loop are shown

as a function of the inverse gauge coupling β for three different values of the diquark source. With

increasing diquark source the deconfinement transition visible in the Polyakov loop is shifted to

larger values of β . This is the same qualitative behaviour as observed when increasing the fermion

mass. In the chiral condensate and the diquark condensate only a very weak transition is observed

which becomes more pronounced for smaller diquark masses. For a particular diquark source of

J̃1 = 0.20 we have normalized the condensates by their vacuum contribution. The result is shown in

Figure 9. The transition in the chiral condensate is very weak while it is by a factor of ∼ 40 stronger

in the diquark condensate. We have so far ignored the necessity for additive renormalization in the

chiral condensate, however. Also the error bars are much smaller for the diquark condensate as

compared to the chiral condensate. Compared to the situation without diquark sources we observe

a chiral improvement like for instance in twisted mass QCD where a similar term is added to the
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Figure 8: Chiral condensate (left), diquark condensate (in units of J̃1, middle) and Polyakov loop (right) as

a function of the inverse gauge coupling β for three different values of the diquark source J̃1.

action in order to improve the chiral properties. The transition temperature agrees with the one

obtained from the Polyakov loop. A future task in our simulations with Majorana fermions at finite

temperature will be to repeat the spectroscopy for smaller fermion masses and various values for

the diquark source term.

7. Results at finite density

At finite density we have no argument that the Pfaffian should remain positive if we add a diquark

source, but we do no expect a severe sign problem for small baryon densities. Our first simulations

here were done on an 83 × 16 lattice with β = 0.96 and κ = 0.156. Figure 10 shows the chiral

condensate, the diquark condensate and the quark number density as a function of small values

of the chemical potential (below the Silver Blaze transition) and different values for the diquark

source. Here we observe that baryon number (and chiral symmetry) is explicitly broken at non-

zero µ such that the quark number density is always non-zero for µ 6= 0. We intend to measure the

diquark spectrum as a function of chemical potential in order to further test our assumptions about

chiral symmetry breaking at finite density in future.
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Figure 9: Normalized chiral (left) and diquark (right) condensates over the inverse gauge coupling β .
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Figure 10: Chiral condensate (left), diquark condensate (in units of J̃1, middle) and quark number density

(right) over chemical potential at T = 0.

8. Conclusions

In this contribution to Lattice 2014 we have reviewed our present results for the mass spectrum of

G2-QCD and its finite density phases at zero temperature. For small quark masses we observe a

splitting of the spectrum into a pseudo-Goldstone sector, an intermediate bosonic baryon sector,

and a nucleonic sector. Although the spectrum of G2-QCD is much richer than that of ordinary

QCD, the results relevant for hadronic physics appear to be quite similar to QCD. In the phase

diagram at zero temperature one observes several transitions in the baryon or quark number density

that correlate well with the different mass scales in the baryon spectrum. The transition with

the smallest value of the chemical potential coincides with the mass of the lightest state carrying

baryon number, consistent with the Silver Blaze property which is realized in G2-QCD as in two-

color QCD or QCD at finite isospin chemical potential. The zero-density ground state remains

unchanged until the quark chemical potential reaches half the mass of the pseudo-Goldstone boson

which is the scalar diquark as in two-color QCD, a baryon with quark number two.

We also find evidence that a phase dominated by fermionic baryons exists for quark chemical

potentials above about 300-600 MeV. In between we found good evidence of a first-order phase

transition from a phase that is dominated by diquark matter to a phase that is probably dominated

by ordinary baryonic matter. This transition occurs somewhat below the scale given, in units of the

quark number, by the nucleon mass as obtained from our vacuum spectroscopy. This might indicate

a rather large binding energy per nucleon or that, for densities above the Silver Blaze transition, the

spectrum of the theory depends stronger on the chemical potential than one might expect.

In order to investigate the chiral properties of the theory in more detail, we have introduced

diquark sources, in particular, to disentangle the pseudo-Goldstone boson spectrum. This led us

to simulate Majorana fermions and allowed us to explicitly demonstrate the vacuum realignment

at zero temperature and chemical potential when the strength of the corrsponding diquark source

term increases relative to the fermion mass. Moreover, it turned out, that the signal for the finite-

temperature chiral transition at vanishing net-baryon density is considerably stronger in the diquark

condensate than it is in the standard chiral condensate. Possible explanations are the explicit break-

ing of chiral symmetry by the Wilson mass that competes with the spontaneous breaking of the

chiral condensate and the necessity of additive renormalizations. This behaviour is reminiscent

of simulations with twisted-mass fermions in QCD where the chiral properties of the theory are
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improved by analogous terms in the fermion action.
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