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1. Introduction

Chiral phase transition at finite temperature Tc is one of most prominent features of QCD. In
1980’s, Psarski and Wilczek investigated the order of the phase transition applying the ε expansion
to linear sigma model (LSM) [1], and pointed out that the nature of the chiral phase transition of
massless two-flavor QCD depends on the existence of the flavor-singlet axial symmetry, UA(1), at
the critical temperature.

Two extreme cases have been well studied so far. If the UA(1) breaking is infinitely large at
Tc, the system would be described by the standard O(4) LSM and thus undergo second order phase
transition. On the other hand, if the breaking vanishes at Tc [2], the symmetry of the system is
enhanced to U(2)×U(2). In this case, the nature of the transition is still under debate. It is argued
that if it is of second the critical exponents in the U(2)×U(2) universality class will emerge [3, 4].

In this work, we investigate chiral phase transition of massless two-flavor QCD with a finite
UA(1) breaking. Instead of dealing with two-flavor QCD directly, U(2)×U(2) LSM with a UA(1)
breaking, which we call the UA(1) broken LSM below, is analyzed as the corresponding effective
theory. The nature is investigated through the renormalization group (RG) flow calculated in the
framework of the ε expansion. Since the full results on this study are available in Ref. [5]1, we focus
only on the highlights. In the study of phase transitions, it is common to see effective potential. We
present the preliminary result of the effective potential.

2. RG flow of the UA(1) broken LSM

The LSM Lagrangian we study consists of the part preserving U(2)×U(2) symmetry and the
one breaking UA(1),

L = LU(2)×U(2)+Lbreaking, (2.1)

LU(2)×U(2) =
1
2

tr[∂µΦ∂µΦ†]+
1
2

m0
2tr[ΦΦ†]+

π2

3
g1

(
tr[ΦΦ†]

)2
+

π2

3
g2tr

[
(ΦΦ†)2] , (2.2)

Lbreaking = −cA

4
(det Φ+det Φ†)+

π2

3
x tr[ΦΦ†](det Φ+det Φ†)+

π2

3
y(det Φ+det Φ†)2

+w
(
tr
[
∂µΦ†t2∂µΦ∗t2

]
+h.c.

)
. (2.3)

where the building block Φ =
√

2(ϕ0 − iχ0)t0 +
√

2(χi + iϕi)ti with t0 ≡ 1/2 and ti ≡ σi/2 trans-
forms as

Φ → e2iθAL† ΦR (L ∈ SUL(2), R ∈ SUR(2), θA ∈ Re), (2.4)

under chiral and UA(1) transformation. Under the working hypothesis that this system undergoes
second order phase transition, the existence of an infrared-stable fixed point (IRFP) is examined in
d = 4− ε dimension with ε = 1.

Rewriting eq. (2.1) in terms of components, ϕa and χa, we obtain

Ltotal =(1+w)
1
2
(∂µϕa)

2 +
1
2

(
m2 − cA

2

)
ϕa

2 +(1−w)
1
2
(∂µ χa)

2 +
1
2

(
m2 +

cA

2

)
χa

2

+
π2

3
[
λ (ϕa

2)2 +(λ −2x)(χa
2)2 +2(λ +g2 − z)ϕa

2χb
2 −2g2(ϕaχa)

2] , (2.5)

1The early version is Ref. [6]
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where λ = g1 + g2/2+ x+ y, z = x+ 2y and a runs 0 to 3. In the following, w = 0 is taken for
simplicity. Non-zero cA breaks degeneracy between ϕa and χa as

mϕ
2 = m2 − cA

2
, mχ

2 = m2 +
cA

2
. (2.6)

We take cA > 0 and mϕ = 0 to realize QCD at Tc. Then, χa has a mass of mχ
2 = cA.

It is naively expected that the massive fields χa decouple from the system in the IR limit. If it
is the case, the system will eventually end up with well known O(4) LSM and hence undergo the
second order phase transition inhering in the O(4) universality class.

In order to trace the effect of the massive fields, we take a mass dependent renormalization
scheme2. β functions thus obtained are

βλ̂ = µ
dλ̂
dµ

=− ελ̂ +2λ̂ 2 +
1
6

f (µ̂)(4λ̂ 2 +6λ̂ ĝ2 +3ĝ2
2 −8λ̂ ẑ−6ĝ2ẑ+4ẑ2), (2.7)

βĝ2 = µ
dĝ2

dµ
=− ε ĝ2 +

1
3

λ̂ ĝ2 +
1
3

f (µ̂)ĝ2(λ̂ −2x̂)+
1
3

h(µ̂)ĝ2(4λ̂ + ĝ2 −4ẑ), (2.8)

βx̂ = µ
dx̂
dµ

=− ε x̂+4 f (µ̂)(λ̂ x̂− x̂2)

+
1

12
(1− f (µ̂))(8λ̂ 2 −6λ̂ ĝ2 −3ĝ2

2 +8λ̂ ẑ+6ĝ2ẑ−4ẑ2), (2.9)

βẑ = µ
dẑ
dµ

=− ε ẑ+
1
2
(2λ̂ 2 − λ̂ ĝ2 +2λ̂ ẑ)− 1

6
h(µ̂)(4λ̂ 2 −3ĝ2

2 −8λ̂ ẑ+4ẑ2)

+
1
6

f (µ̂)(−2λ̂ 2 +3λ̂ ĝ2 +3ĝ2
2 −2λ̂ ẑ−6ĝ2ẑ+12λ̂ x̂+6ĝ2x̂−12x̂ẑ+4ẑ2) (2.10)

where the couplings withˆdenote dimensionless couplings, µ = µ̂√cA is the renormalization scale,
and

f (µ̂) = 1− 4

µ̂
√

4+ µ̂2
arctan

µ̂√
4+ µ̂2

, h(µ̂) = 1− 1
µ̂2 log[1+ µ̂2], (2.11)

with f (µ̂ → 0) = µ̂2/3, h(µ̂ → 0) = µ̂2/2, and f (µ̂ → ∞) = h(µ̂ → ∞) = 1.
The resulting RG flows can be classified into two cases, depending on the asymptotic behavior

of λ̂ in the µ → 0 limit. One case tends to be realized when cA is small, where all the couplings
diverge. Thus, in this case the transition will be of first order. The other case tends to happen
when cA is relatively large. In this case, all the couplings except for λ̂ diverge, but λ̂ approaches
λ̂IRFP = ε/2 that coincides the IRFP of the O(4) LSM.

The asymptotic behaviors of the diverging couplings are calculable and turns out to be

ĝ2,asym(µ)≡ lim
µ→0

ĝ2(µ) = cµ̂− 5
6 ε , (2.12)

x̂asym(µ)≡ lim
µ→0

x̂(µ) =
3
32

ĝ2
2,asym(µ), (2.13)

2For two-point functions, the on-shell scheme is applied, and hence cA does not run.
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ẑasym(µ)≡ lim
µ→0

ẑ(µ) =
3
4

ĝ2,asym(µ), (2.14)

where c is a dimensionless constant depending on the initial conditions of the RG flow.
With above results, we can calculate the approaching rate of λ̂ to its IRFP. Towards the infrared

limit (µ̂ → 0), βλ̂ becomes

lim
µ→0

βλ̂ =− ελ̂ +2λ̂ 2 + f (µ̂)
(

1
2

ĝ2
2,asym − ĝ2,asymẑasym +

2
3

ẑ2
asym

)
+ ...

=− ελ̂ +2λ̂ 2 +
c2

24
µ̂1/3. (2.15)

Then, the approaching rate is found to be

lim
µ→0

λ̂ (µ)− λ̂IRFP ∼ µ̂1/3. (2.16)

Usually, the approaching rate is discussed through the derivative of the β function,

ω =
dβλ̂

dλ̂
|λ̂=λ̂IRFP

, (2.17)

which is one of the universal exponents3, and the O(4) LSM and the UA(1) broken LSM take

ωO(4) = ε and ωUA(1)broken = 1−2ε/3, (2.18)

respectively.
General argument of renormalization group tells that ω is determined by the RG dimension

of the leading irrelevant operator. In O(4) LSM, (ϕa
2)2 is the one. In the UA(1) broken LSM,

the leading irrelevant operator is not evident but should not be the same as the O(4) case because
ωO(4) ̸= ωUA(1)broken. To identify the leading irrelevant operator, we calculate ω with ĝ2 = 0 as
a trial, which corresponds to omitting (ϕaχa)

2 [see eq.(2.5)]. Then, ω = ε is obtained. From this
result, it is concluded that the operator (ϕaχa)

2 is the leading irrelevant operator in the UA(1) broken
LSM. Notice that this operator is not invariant under the O(4) rotation in the O(4) LSM, which acts
only on ϕa but leaves χa unchanged.

The above discussion may sound strange because, if the decoupling theorem [8, 9] holds in
this system, the massive field χa should not affect the low energy behavior of the system. However,
the decoupling theorem becomes non-trivial when a theory contains a dimensionful coupling [10].

Since one of the universal exponents, ω , turns out to be different from that in the standard
O(4) LSM, it is clearly interesting to see the other exponents (ν and η in the standard notation).
We have calculated these exponents in the UA(1) broken LSM through one-loop, and found that
they are the same as those in the O(4) LSM. Two-loop calculation is ongoing.

Whether λ̂ flows into λ̂IRFP or not depends on not only cA but also the initial conditions for the
couplings. We have determined for various values of cA the parameter space of the initial condition
(attractive basin) with which λ̂ → λ̂IRFP. It is found that the attractive basin shrinks as cA decreases.

The scheme dependence of the low energy behavior was also examined by taking the MS
scheme as an alternative. Since the MS scheme does not take care of the finite mass of χa and

3For exceptions, see Ref. [7].
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hence the β function does not feel the decoupling, we compared the low energy behavior of the
four-point Green’s function of ϕa between different schemes. No scheme dependence is observed
at the one-loop level. For details of the above considerations, see Ref. [5].

3. Effective potential

In order to gain more understanding, we are calculating the effective potential of the UA(1)
broken LSM. Our setup indicated by the working hypothesis and mϕ = 0 corresponds to the system
slightly above Tc. Thus the order parameter ⟨Φ⟩ must be zero. By looking at the effective potential,
we check whether this is indeed the case. In the following, we concentrate on the case where
⟨χa⟩ = 0 for simplicity. The calculation of the general case is not completed yet. We choose
the vacuum expectation value as ⟨ϕa⟩ = {ϕcl,0,0,0}. The explicit one-loop calculation yields the
effective potential,

Veff(ϕcl)/µε =
π2

3
λ̂ (µ)ϕcl

4 +V 1−loop
ϕ (ϕcl)/µε +V 1−loop

χ (ϕcl)/µε . (3.1)

where the first term represents the tree level result, and the second and third terms are the one-
loop contributions from the diagrams containing ϕa and χa in the loop, respectively. Neglecting
V 1−loop

χ (ϕcl), Ve f f agrees with that of O(4) LSM. The explicit expressions for the one-loop contri-
butions are

V 1−loop
ϕ (ϕcl)/µε =

π2

3
λ̂ 2(µ)

(
log

[
4
3

π2λ̂ (µ)
ϕcl

2

µ2−ε

]
+

1
2
+

3
4

log3
)

ϕcl
4, (3.2)

V 1−loop
χ (ϕcl)/µε =

µ−2ε

4(4π)2

[
(m2

1)
2 log[m2

1/cA]+3(m2
2)

2 log[m2
2/cA]

−
(

4
3

π2 µε
)2

{(λ̂ (µ)− ẑ(µ))2 +3(λ̂ (µ)+ ĝ2(µ)− ẑ(µ))2}

×
(∫ 1

0
dξ log

[
1+ξ (1−ξ )

µ2

cA

]
+

3
2

)
ϕcl

4

−4
3

π2 µε{(λ̂ (µ)− ẑ(µ))+3(λ̂ (µ)+ ĝ2(µ)− ẑ(µ))}cAϕcl
2

]
,(3.3)

where

m2
1 ≡

4
3

π2 µε(λ̂ (µ)− ẑ(µ))ϕcl
2 + cA, m2

2 ≡
4
3

π2 µε(λ̂ (µ)+ ĝ2(µ)− ẑ(µ))ϕcl
2 + cA. (3.4)

By solving the RG equation[
µ

∂
∂ µ

+∑
i

βĝi

∂
∂ ĝi

− γϕcl
∂

∂ϕcl

]
Veff(ϕcl) = 0, (3.5)

we implement the RG improvement, which is realized by simply setting µ = ϕcl
2/(2−ε) in the

unimproved expressions. Where {ĝi} = {λ̂ , ĝ2, x̂, ẑ}. Because there are two scales ϕcl and cA, we
need more powerful technique for the resummation. Owing to the RG improvement, we can easily
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Figure 1: Effective potential and contributions from each term. Parameters are set to be cA/Λ2 = 1 and
(λ̂ (Λ), ĝ2(Λ), x̂(Λ), ẑ(Λ)) = (0.05,0.5,0,0). This is inside of the attractive basin. ε is set to 1. There is a
non-trivial minimum produced by higher order contribution in V 1−loop

χ .

see that the effect of V 1−loop
ϕ is just a shift of the coefficient of the tree potential. In the attractive

basin, λ̂ (µ) goes to the positive constant ε/2 in µ → 0. Therefore, V 1−loop
ϕ does not produce a

non-trivial minimum as seen in the numerical calculation.
Fig. 1 shows shapes of the RG improved effective potential drawn by numerical calculation.

The largest contribution near the origin comes from V 1−loop
χ , and it produces the non-trivial min-

imum. In this region, the loop contribution is larger than the tree contribution, the perturbative
calculation is disputable. To get more information about the minimum, we estimate the behavior
of V 1−loop

χ near the origin. Since ĝ2ϕcl
2 and ẑϕcl

2 converge to zero in µ = ϕcl
2/(2−ε) → 0, we can

expand V 1−loop
χ around ϕcl = 0 as

V 1−loop
χ (ϕcl)/µε ≈π4

9
µε{(λ̂ − ẑ)3 +3(λ̂ + ĝ2 − ẑ)3}ϕcl

6

cA

− π2

63 {(λ̂ − ẑ)2 +3(λ̂ + ĝ2 − ẑ)2}ϕcl
4 µ2

cA
+ ... , (3.6)

where the first term comes from (m2
1)

2 log[m2
1/cA] and (m2

2)
2 log[m2

2/cA] in eq.(3.3). These terms
have linear and quadratic in couplings , though they are canceled by other terms. The second
term comes from the one including log[1+ξ (1−ξ )µ2/cA]. Using the IR asymptotic behaviors of
couplings (eq.(2.12)-(2.14)),

lim
µ→0

µε{(λ̂ − ẑ)3 +3(λ̂ + ĝ2 − ẑ)3}ϕcl
6

cA
=− 3

8
c3c

5
4 ε−1
A µ− 3

2 εϕcl
6 =−3

8
c3c

5
4 ε−1
A ϕcl

6−3ε ,

lim
µ→0

{(λ̂ − ẑ)2 +3(λ̂ + ĝ2 − ẑ)2}ϕcl
4 µ2

cA
=

5
8

c2c
5
6 ε−1
A µ2− 5

3 εϕcl
4 =

5
8

c2c
5
6 ε−1
A ϕcl

8− 10
3 ε .
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In the rightmost in each line, we use µ = ϕcl
2/(2−ε). The first term of eq(3.6) is proportional to ϕcl

3

and the second term is proportional to ϕcl
4+ 2

3 in ε → 1, The first term gives larger contribution than
ϕcl

4. This term becomes negative when c > 0, therefore another minimum other than ϕcl = 0 exists
as shown in the numerical calculation. However, this contribution is cubic in couplings. Because
we carry out the calculations to quadratic order, the cubic order is subject to unknown two-loop
coefficients. To know whether the non-trivial minimum arises or not, the two-loops calculation is
needed.

4. Summary

In the ε expansion, we calculated the RG flow and the effective potential of the UA(1) broken
LSM. There are two cases of the flow depending on size of the UA(1) breaking. With small UA(1)
breaking, the flow tends to diverge in the IR limit. Increasing the breaking, one of the coupling
converges to the same value with the IR fixed point of the O(4) LSM. In this case, the critical
exponents, ω , ν , η are calculated to one-loop. ω turns out to differ from that in O(4), while
the others are found to be the same to one-loop order. This difference comes from the leading
irrelevant operator in the UA(1) broken LSM and can be interpreted as the non-decoupling effect.
We determined the attractive basin in parameter space of the UA(1) broken LSM. This attractive
basin shrinks as the size of the UA(1) breaking decreasing. There is a non-trivial minimum in the
RG improved effective potential. However, this minimum is produced by the order in couplings
higher than we have performed. We need to carry out the higher loops calculation to establish the
location of the minimum.
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