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to those of continuum QCD, such as a chiral critical end point and a nuclear liquid gas transi-
tion. Here I compare the combinatorics of staggered and Wilson fermions in the strong coupling
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1. Motivation

The QCD phase diagram is conjectured to have a rich phase structure, but only little is known
from lattice QCD due to the sign problem. The available Monte Carlo methods are all limited to
µ/T . 1. Lattice QCD in the strong coupling limit, β = 2Nc

g2 → 0, and in a dual representation
is a model where the sign problem is mild enough to study the full µ-T phase diagram. This
virtue crucially depends on the order of integration. The following three orders are common: (1)
Integrating out fermions first. This results in the fermion determinant detM[U ]. The Monte Carlo
simulation is over gauge fields, β can be varied continuously. However, there is the severe sign
problem at finite µ , and it is expensive to approach the chiral limit. (2) Integrating out spatial
gauge links first then the fermions. The remaining temporal gauge links are mapped on Polyakov
loops to obtain a 3-dim. heavy quark effective theory [1, 2]. This is applicable to Wilson fermions,
where backtracking of fermion world lines is prohibited. The fermion determinant is factorized
into a kinetic and a static part. Corrections to the static limit are treated analytically (expansion in
hopping parameter and gauge action up to some order O(κnu(β )m)). (3) Integrating out all gauge
links first, then the fermions. For staggered fermions, this leads to the Monomer-Dimer-System
[3], which has a mild sign problem, and the chiral limit is cheap. There is no fermion determinant
and it can be studied e.g. via Worm algorithms [4]. For Wilson fermions, results only consist for
the Schwinger model so far [5, 6]. Moreover, incorporating the gauge action requires additional
gauge integrals and introduces plaquette occupation numbers [7].

I will focus here on strategy (3) and explain its combinatorial interpretation. Lattice QCD at
strong coupling (SC-LQCD) shares important features with continuum QCD: it is “confining” in
the sense that only color singlet d.o.f. survive gauge integration, the mesons and baryons. These are
point-like objects in the strong coupling limit, but become extended objects away from the strong
coupling limit and mix with gluons. SC-LQCD also has a (nuclear) liquid gas transition from
the vacuum to baryonic crystal, where all lattice sites are occupied by baryons. Since the lattice
spacing at strong coupling is maximally coarse, the degrees of freedom are on a hypercubic crystal
and saturation is due to the Pauli principle. For staggered fermions, there is also a spontaneous
chiral symmetry breaking and its restoration at some critical temperature aTc. In contrast to Wilson
fermions, there is a remnant chiral symmetry U55(1) ⊂ SUL(N f )× SUR(N f ) that is not broken by
the finite lattice spacing. The ultimate goal is to study the QCD phase diagram and the nuclear
transition away from the strong coupling limit. A first step into that direction, the O(β ) corrections
to the strong coupling phase diagram, has already been undertaken [7].

A dimer/flux representation is possible for both lattice actions, but they differ qualitatively.
For staggered fermions: a partition function in the monomer-dimer representation is valid for any
quark mass; there is an exact chiral symmetry, hence it is adequate to study chiral properties (also,
simulations in the chiral limit are cheap); however, staggered fermions are spinless in the strong
coupling limit. Contrast this with Wilson fermions: the flux representation involves spin, but since
backtracking of fermions is not allowed, (1−γµ)(1+γµ) = 0, it poses a complicated combinatorial
problem and expansion in spatial hadronic hoppings is required. Both discretizations have very
different lattice artifacts. The main motivation for this analysis is the question whether they share
a “physical” content at strong coupling or at O (β ) which could be isolated from lattice artifacts.
The combinatorial perspective may help to shed light on this question.
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2. Gauge Integrals, Invariants and Combinatorics

Combinatorics can give additional insight into lattice QCD, when formulated in a dual, color
singlet representation based on integer variables. The combinatorial paradigm I want to utilize is
the question of how many ways there are to put n balls into k boxes. Many combinatorial problems
reduce to this question, and the answer will depend on the permutation symmetries in the problem,
i.e. whether balls or boxes are distinguishable or not, and which restrictions on the placements are
made (e.g. the 12 canonical answers known as “twelvefold way”). Combinatorial formulae amount
to integer sequences which are listed in the On-Line Encyclopedia of Integer Sequences [8]. In the
following I quote the A numbers from OEIS for further explanations and proofs.

First consider the SU(Nc) one-link integral [9, 10] which can be evaluated both for staggered
and Wilson fermions:

z(x,µ) =
∫

dUµ(x)etrc[Uµ (x)M†+Uµ (x)†M], (2.1)

(Mstagg.)i j = χ
f

i (x)χ̄
f
j (x+ µ̂), (MWilson)i j = ψ

β , f
i (x)(1− γµ)αβ ψ̄

α, f
j (x+ µ̂), (2.2)

with i, j ∈ {1, . . .Nc} and f ∈ {1, . . .N f } and α , β Dirac indices. In both cases, the link integrals
are gauge invariants, which can be expressed by linear combinations of traces and determinants.

z(x,µ) = ∑
k1,...kNc+1

αk1...kNc+1 det
c
[M]k1 det

c

[
M†]k2 trc

[
MM†]k3

. . . trc
[
(MM†)Nc−1]kNc+1 (2.3)

The prefactors αk1...kNc+1 can be determined via Grassmann identities (y = x+ µ̂), e.g. for N f = 1
staggered fermions (with B(x) = 1

Nc! εi1...iNc
χi1(x) . . .χiNc

(x)):

eχ̄yχy =
∫

dχxdχ̄x

∫
dUeχ̄xχx+χ̄xUχy−χ̄yU†χx =

Nc

∑
l=0

αk
Nc!

(Nc− k)!
(χ̄xχxχ̄yχy)

k (2.4)

⇒ z(x,y) =
Nc

∑
k=0

(Nc− k)!
Nc!k!

(MxMy)
k + B̄(x)B(y)+(−1)NcB̄(y)B(x). (2.5)

The prefactors can also be determined via combinatorics (la-
beled balls into labeled boxes, see Fig. 1). This strategy
can be generalized to also apply to N f > 1 and for Wilson
fermions, where meson hoppings (MxMx+µ̂) and baryon hop-
pings B̄(x)B(x+ µ̂) carry flavor and spin. The corresponding
integrals have been determined for Nc ≤ 3 in [10].

N c (N c−1)

1

2

1

M 1

M 2

M 3

2

1 2

1 1

1

2

2

2

Figure 1: k = 2 balls (χ̄χ)
into Nc = 3 boxes (mesons).

Another type of gauge integrals are those over the trace of closed loops of gauge links: let

P = ∏
(x,µ)∈C

Uµ(x) = diag
(
eiφ1 , . . .eiφNc−1 ,eiφNc

)
with φNc = −

Nc−1
∑

k=1
φk be any closed loop of gauge

links along contour C (e.g. Polyakov loop, Wilson loop), then, for SU(Nc) there are Nc−1 gauge
invariants, such as L = trc[P] and L∗. Only the mesonic M = LL∗, baryonic B = LNc , and mixed
operators O = M nBm for n,m ∈ N) have non-vanishing expectation values:

〈O(L,L∗ . . .)〉= 1
(2π)Nc−1

∫
dφ1 . . .dφNc−1V (L,L∗, . . .)O(L,L∗, . . .), (2.6)
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1 (mesonic) L3 L6 L9 L12

1 (baryonic) 1 1 5 42 462
(LL∗) 1 3 21 210 2574
(LL∗)2 2 11 98 1122 15015
(LL∗)3 6 74 498 6336 91091
(LL∗)4 23 225 2709 37466 571428

L3 L6

(LL*
)
2

2 2
+

2
+

(LL*
)
3

2 2
+

2

+

2
+

L9

2

+

Table 1: List of SU(3) gauge integrals 〈(LL∗)n(L3)m〉, which enumerate the number of restricted
permutations patterns, which is the number representations of bounded height, see Eq. (2.8).

where V (L,L∗ . . .) is obtained from the invariant Haar measure: dµ(φ) = ∏
i> j
|eiφi−eiφ j |2 ∏

i
dφi. The

result for SU(2), where L∗ = L, gives rise to the so-called Catalan numbers (A000108), which play
a prominent role in combinatorics, e.g. as the number of 123-avoiding permutation patterns:〈

L2n〉= 1
2π

∫ 2π

0
dφ2sin2

φ(2cosφ)2n =
1

2π

∫ 2

−2
dL
√

4−L2L2n =Cn ≡
1

n+1

(
2n
n

)
(2.7)

For SU(3), where tr[P2] = L2− 2L∗2, the various results listed in Tab. 1 can be mapped on repre-
sentations of the permutation group. The invariants of higher moments in L, L∗, which are needed
to express the static limit of Wilson fermions (see below), can be characterized as restricted per-
mutation patterns, which correspond to dimensions of standard young tableaux of bounded height.

mNc(n) = ∑
h(λn)≤Nc

d2
λn
, bNc(n) = dn×Nc , mixNc(nm,nb) = ∑

h(λnm )≤Nc

dnb×Nc,λnm
dλnm

. (2.8)

To compute these invariants in the general case of SU(Nc) or U(Nc), one needs to evaluate tr[Pn],
where n = 1, . . . ,NcN f . These can be obtained via generalized Lucas polynomials. The Lucas n-

step numbers are F(n)
k =

n
∑

i=1
F(n)

k−i (which is Fibonacci-like for n= 2). Related to SU(3) are the 3-step

Lucas numbers F(3)
k = F(3)

k−1 +F(3)
k−2 +F(3)

k−3 with seeds F(3)
0 = 3, F(3)

1 = 1, F(3)
2 = 3, from which the

following 3-step polynomials F in the variables x, y, z are obtained :

F(3)
n (x,y,z) = tr


 x y z

1 0 0
0 1 0


n , F̃(3)

n (x,y,z) = tr


 x y z
−1 0 0
0 −1 0


n . (2.9)

It turns out that the signed verison F̃3 is directly related to tr[Pn] = F̃n(P) by identifiying x ≡ L =

tr[P], y≡ L∗ = tr[P†], z≡ D = det[P] (=1 for SU(Nc)). The first orders are

tr[P0] = 3, tr[P1] = L,

tr[P2] = L2−2L∗, tr[P3] = L3−3LL∗+3D,

tr[P4] = L4−4L2L∗+2L∗2 +4LD, tr[P5] = L5−5L3L∗+5LL∗2 +5L2D−5L∗D.

The corresponding versions for arbitrary Nc is obtained by considering the signed Nc×Nc matrix
F̃(x1, . . . ,xNc). I have used the generalized Lucas polynomials to determine the flavor dependence
of the static limit.
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3. Strong Coupling Partition Functions

The final partition functions at strong coupling are obtained after Grassmann integration,
which introduces site weights wx. For staggered fermions:

wx =
∫

∏
c
[dχc,xdχ̄c,x]e2amq χ̄c,xχc,x(χ̄c,xχc,x)

kx =
Nc!
nx!

(2amq)
nx (3.1)

with monomers nx = Nc− kx, determined by Grassmann constraint kx = ∑
±µ̂

k±µ̂(x), hence nx ∈

{0, . . .Nc}, no monomers at baryonic sites. The well-known staggered partition function (N f = 1)
valid to all orders in hopping parameter is

Zstagg.
SC (mq,µ,γ) = ∑

{kb,nx,`}
∏

b=(x,µ)

(Nc− kb)!
Nc!kb!

γ
2kbδµ0

︸ ︷︷ ︸
meson hoppingsMxMy

∏
x

Nc!
nx!

(2amq)
nx︸ ︷︷ ︸

chiral condensateMx

∏
`

w(`,µ)︸ ︷︷ ︸
baryon hoppings B̄xBy

(3.2)

with kb ∈ {0, . . .Nc}, nx ∈ {0, . . .Nc}, `b ∈ {0,±1}. The weight w(`,µ) and sign σ(`) = ±1 for
oriented loop ` depend on loop geometry. The anisotropy γ = a/at is needed to vary the temperature
continuously at β = 0 [11].
For Wilson fermions, Grassmann integration amounts to spin and flavor conservation. The site
weights (almost) cancel link weights. Only when spatial hoppings of color neutral states occur,
the site weights are non-trivial. The partition function can generally be mapped on a vertex model.
This has been done for the Schwinger model, which maps on a 7-vertex model for N f = 1 [5] and
on a modified 3-state 20-vertex model for N f = 2 [6]. Grassmann integration for Nc > 1 is too
complicated to do by hand but can be automatized using computer algebra. The Wilson fermion
partition function has the general structure

ZWilson
SC (κ,µ) = ∑

{kb,nx,` j}
N({kb, ` j})vCi

i ∏
x

1
(2κ)nx ∏

` j

w(` j,µ). (3.3)

Ci counts how often vertices of type i occur and N({kb, ` j}) counts multiplicities of loops. There
are various baryonic loops ` j (depending on spin and flavor). The Grassmann constraint allows
mesonic and baryonic world lines to intersect even for N f = 1. The vertex weights vi still need to
be determined in general via Grassmann integration.

In the static limit, i.e. in the absence of spatial fermion hoppings, the strong coupling partition
function is Zstatic

SC = ∏
~x

Z1(~x), where Z1 is the sum over all possible hadronic quantum states |ψ〉.

This describes SC-LQCD in the high temperature and/or high density regime, see Fig. 2. For
staggered fermions, the chiral restoration takes place when the number of spatial dimers reaches
a critical value. The nuclear and chiral transition coincide, because 〈χ̄χ〉 vanishes as a baryonic
crystal forms. The number of hadronic states |ψ〉= |Pu,Pd , . . .PN f ,Qπ+ ,QK+ , . . .〉 is

Z1(µ,T ) =
(

2N f

NcN f

)
Nc

+
Nt Nc/2

∑
n=1

tn(2amq)
2n +2

(
Nc +N f −1

N f −1

)
cosh(µB/T ), (3.4)

where the terms O(2amq) are suppressed at high T (for Nc = 3 in the chiral limit, the prefactors tn
are related to Tribonacci numbers (A000073), a generalization of Fibonacci). The degeneracies of
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Figure 2: At β = 0, both staggered and Wilson fermions become static at large T and/or µ . Left:
The staggered SC phase diagram, it has been measured in [4,7]. Right: Static Wilson fermions
described by monomers/dimers/fluxes, multiplicities are due to spin and Kt .

the mesonic states are given by central polynomial coefficients (see A077042) which number the
possibilities to put n unlabeled balls into k labeled boxes, allowing at most Nc balls in each box.

For Wilson fermions, with Kt = (2κ)Nτ the hopping parameter κ = 1
4+2amq

, for N f = 1:

Z1(µ,T ) =
2Nc

∑
k=0

T (k)K2k
t +

Nc

∑
k=0

P(k)K(2k+Nc)
t 2cosh(µB/T )+K2Nc

t 2cosh(2µB/T ). (3.5)

The combinatorics of the mesonic sector is given by the so-called tetrahedal numbers (A133826)

T (k) =
k
∑

q=0
dD0q =

(3+min(k,2Nc−k)
3

)
, with D0q the mesonic irreducible representations of SU(Nc), and

product numbers P(k) = (1 + k)(1 + Nc − k). This can be generalized for N f > 1, e.g.

T (k) =
((2N f )

2−1+min(k,2Nc−k)
(2N f )2−1

)
, and Eq. (3.5) contains 2N f + 1 sums ∼ K2k+nNc

t . To conclude, the
quantum number degeneracies of all static states can be listed via combinatorial formulae.

There are two kinds of corrections to the static limit, which can be both addressed systemat-
ically via an expansion: (1) The hopping parameter expansion in κs allows to approach the chiral
limit, with the number of spatial mesonic and baryonic hoppings being controlled by the quark
mass. In a finite volume, this expansion always terminates due to the Grassmann constraint! (2)
The expansion in β (the inverse gauge coupling) allows to approach the continuum limit. The stag-
gered strong coupling partition function is in fact valid for all quark masses (with the chiral limit
being cheapest when addressed with a worm algorithm), whereas the Wilson partition function
is restricted to rather large quark masses. In both lattice discretizations, the gauge action can be
incorporated order by order, which gives rise to higher order link integrals.

The strategy to study both lattice discretizations on a par is to expand around the static limit
by making use of the Hamiltonian formulation that can be derived in the continuous time limit,
Nτ → ∞ [11]. In this limit, the partition function simplifies further as only single meson hoppings
need to be considered. The static lines are the in and out states of the transfer matrix:

Z = Tr[eβH ], H =
1
2 ∑
〈x,y〉

∑
Qi

J+Qi(x)
J−Qi(y)

, J−Qi
= (J+Qi

)†, (3.6)

where the generalized quantum numbers Qi (spin, parity, flavor) are locally conserved, and spatial
dimers represented by J+Qi(x)

J−Qi(y)
raise quantum number Qi at site x and lower them at a neigh-

boring site y (see [11] for the case of N f = 1,2 for staggered fermions). For both staggered and
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Figure 3: Left: Systematic expansion in the spatial hoppings in the Hamiltonian formulation, where
hadrons are emitted/absorbed at events in continuous time, depending on vertex weights vi. Right:
Example of a gauge correction to the SC-limit, hadrons become extended objects.

Wilson fermions, the matrices J±Qi
contain vertex weights. They are the crucial input to sample the

corresponding partition function with a quantum Monte Carlo algorithm to all orders in κs, e.g. via
a continuous time Worm algorithm. However, whether also for Wilson fermions in four dimensions
all vertex weights are positive to evade the sign problem is still an open question, although due to
the continuous time limit, only a small set of vertices need to be considered. For the simulation of
the Schwinger model with Wilson fermions at strong coupling with the Worm algorithm see [12].

Also the gauge corrections could be included in this Hamiltonian formulation. So far, the
gauge corrections have been studied for finite Nτ = 4 and for N f = 1 staggered fermions. In a
collaboration with J. Langelage, P. de Forcrand and O. Philipsen, we have determined the phase
diagram of SC-LQCD at O(β ) [7], where the gauge action is linearized and a new set of one-
link integrals (those along an excited plaquette) have to be evaluated and new invariants with a
combinatorial interpretation arise. We find that the second order phase boundary in the µ-T plane
is shifted to lower temperatures with increasing β , but that the tricritical point and the first order
transition is invariant at O(β ). In contrast, the critical endpoint of the first order nuclear transition,
which coincides with the chiral transition at β = 0, moves down along the chiral first order line.
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