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We present preliminary results for the determination of the critical endpoint of the chiral transition
in N f = 3 QCD with µ = 0. We have employed unimproved Wilson-Gauge action with staggered
fermions, for which previous results on the critical endpoint are available. As an extension of
these results we have studied the dependence of the critical mass on the strength of the smearing
for small Nt and have found a rapid decrease of the critical mass with higher smearing.
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Figure 1: The expected order of the QCD phase transition at µ = 0 as a function of the u, d and s quark
masses. [1, 2, 3]

1. Introduction

It is well known that for the physical values of the quark masses QCD exhibits a analytic
crossover at µ = 0 from the chiraly broken to the chiraly symmetric phase. However it was pre-
dicted [1] that the type of the transition depends on the number of quark flavors and their masses.
The expected order of the transition as a function of the quark masses can be found in figure 1.
Here it can be seen that in the case of N f = 3 degenerate quarks both for infinite and for vanishing
quark masses a first order transition is expected. Around this limits regions of first order transition
are expected. These regions are separated from the physical region with a crossover behavior by
lines of second order transitions. [1, 2, 3]

There have been several attempts to quantitatively locate at least one point on the line of
second order transition in the lower left corner of the mud /ms-quark-mass-plane using lattice QCD.
A overview of some of these attempts can be found in table 1. Using different actions and lattice
spacings the estimates for the critical masses vary over a large range. In general it seems that for
staggered quarks the critical mass shifts to smaller values when the lattice spacing is decreased
or the action becomes more continuum like. In recent determination with staggered fermions on
Nt = 6 lattices only an upper bound can be given. Recently also results with Wilson fermions are
available which predict the critical mass to be somewhat higher than the staggered results [4].

With staggered fermions, a continuum like action and a fine lattice spacing it is very difficult
to reach the second order line. On the other hand it is relatively easy to reach this line on coarse
lattices with an unimproved action [5, 6]. The approach of this work is to simulate with such an
action to locate the transition and then gradually make the action more continuum like. During this
procedure the critical masses can be tracked.

More precisely an unimproved Wilson gauge action with 3 degenerate flavors of two times
stout-smeared rooted staggered quarks has been used. With the smearing-parameter ρ = 0 this
action coincides with the one used in [5, 6]. Gradually increasing ρ the behavior of the critical
mass has been monitored.
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Table 1: Recent determination of the critical N f = 3 quark mass with different actions. (Table from [10],
with modifications)

Nt action mπ,c Ref.
4 stagg.,unimproved ∼ 260MeV [5]
6 stagg.,unimproved ∼ 150MeV [6]
4 stagg.,p4 ∼ 70MeV [7]
6 stagg.,stout ≤ 50MeV [8]
6 stagg.,HISQ ≤ 45MeV [9]
6 Wilson-Clover ∼ 135MeV [4]

2. Methods

Close to a second order transition observables show universal behavior typical for the uni-
versality class of the transition. The transition in question is expected to fall into the 3D Z(2)
universality class, which is the universality class of the 3D ising model. Observables in QCD
that show a pronounced transition should, close to the transition, be mixtures of some energy-like
observable E and some magnetisation-like observable M . Thus we can make the ansatz

E = SG/β +aψ̄ψ, (2.1a)

M = ψ̄ψ +bSG/β (2.1b)

close to the transition. Here ψ̄ψ is the chiral condensate and SG the gluonic action. Using the
condition cov(E ,M ) = 0 the values of M and E can be extracted [5]. The histogram of M and
E can be seen for one simulation very close to the transition in figure 2.

From the behavior of the singular part of the free energy density close to a second order
transition in a finite box with volume L3 under rescaling one can derive the scaling behavior of the
magnetic susceptibility

χM = L−
γ

ν φ
fss
χM

(ca(m−mc)L
1
ν ). (2.2)

γ , ν are critical exponents and φ fss
χM

is the universal finite size scaling function. a is the lattice
spacing and c is an undetermined constant. The chiral susceptibility χψ̄ψ can easily be shown to
have the same asymptotic scaling behavior than the magnetic susceptibility since γ

ν
is the biggest

exponent contributing.
An other quantity to study the phase transition is the binder cummulant. The binder cummulant

of an observable x is defined as

B4(x) =
〈x4〉
〈x2〉2 (2.3)

and is closely connected to the kurtosis. At a critical point in the infinite volume limit the binder
cummulant should take a universal value B∗4 which is characteristic for the universality class of the
transition. For larger values of the quark masses it should take the value 3 and for smaller quark
masses it should take the value 1. In the finite volume the jump of B4 is washed out. However the
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Figure 2: From top to bottom: The time series of the magnetisation like observable M , the two dimensional
histogram of M and E and the histogram of M . In the histogram the red line is a average shifted histogram.

binder cummulant of M is expected to scale as

B4(M ) = φ
fss
B4(M )(ca(m−mc)L

1
ν ). (2.4)

From this follows that the for large volumes the value at the crossing point of the binder cummulant
calculated at different volumes is an universal quantity and coincides with B∗4.

The strategy to determine the critical mass which is employed in this work is the following:
One generates a set of ensembles for different bare mass parameters. The gauge coupling β is
tuned for each simulation in such a way that the chiral susceptibility becomes nearly maximal.
Using reweighing in β one can tune exactly to the maximum of the chiral susceptibility. The line
in the β /ma-plane defined by this procedure is called pseudocritical line.

Along the pseudocritical line susceptibilities should behave according to equation (2.2). A
particularly easy way to determine the critical endpoint is to rescale the susceptibility by a factor
L

γ

ν and to look for an intersection point. Doing so one has to make an ansatz for the φ fss
χM

. In this
exploratory work a Pade-ansatz

φ
fss
χM

=
1

α + x
with x = a(m−mc) (2.5)

where α is a free fit parameter was used. A exponential ansatz leads to comparable results. With the
exponents are γ and ν fixed to their Z(2) values one is left only with the constant c from equation
(2.2), the parameter α and the critical mass which have to be fitted. Analyses for several values of
the stout-smearing parameter has been combined into a joint fit in which it was demanded that the
scaling function from equation (2.5) is the same for all values of ρ .

For the binder cummulant scaling function φ fss
B4(M ) a polynomial ansatz of degree 2 was em-

ployed and the critical exponents where kept as free fit parameters. Therefore the universality class
in principle could be determined from the values of B∗4. It turned out that the fits with the lim-
ited dataset and unconstrained critical exponents are relatively unstable. Therefore and because
of limited space only the critical masses as determined form the scaling of the susceptibility are
presented.
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Figure 3: The scaling of χM at four different smearing parameters at Nt = 4. The y-axis has been rescaled
with proper critical exponents. The different curves correspond to different volumes. The yellow band
indicates the estimate for the critical mass. The inset shows the universal scaling function with the data
collapsed to the curves by proper rescaling of the x- and y-axis.

3. Results

Simulations where performed at four values of the smearing parameter ρ at Nt = 4. For each
ρ three bare quark masses and four spatial lattice extends L where chosen. In figure 3 the scaling
of χM is plotted.

In figure 4 the estimate for the critical mass at different values of the smearing parameter is
shown. One can see that on Nt = 4 lattices the critical mass decreases significantly already for very
small values of the smearing parameter. Eventually even negative values are encountered. The
meaning of these negative values are as follows: There is no positive mass at which the transition
is present. However remnants of the Z(2)-scaling can still be existent. When fitted with the same
fit function, the critical mass will shift to negative values.

A similar analysis was also performed with Nt = 6 data. Since the cost of the simulations
increases drastically form Nt = 4 to Nt = 6 there exist only a limited amount of statistics and only
two values of the smearing parameter and the spatial lattice extend. Because of this the results for
Nt = 6 lattices might not be very reliable and where only included for illustrative purpose. The
results of the fit to χM can be seen if figure 5. The data from Nt = 6 suggest a much milder shift of
the critical mass as function of the smearing parameter than observed at Nt = 4 lattices.

In figure 6 several scenarios for the continuum extrapolation of the critical mass are shown.
Scenario (a) is the one commonly expected. However the scenarios (b)-(d) are also possible and
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Figure 4: Estimates of the critical mass as the function of the smearing parameter.
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Figure 5: The scaling of χM at two different smearing parameters at Nt = 6. The y-axis has been rescaled
with proper critical exponents. The different curves correspond to different volumes. The yellow band
indicates the estimate for the critical mass. The inset shows the universal scaling function with the data
collapsed to the curves by proper rescaling of the x- and y-axis.
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Figure 6: Several scenarios for the continuum extrapolation of the critical mass value.

will result in the transition to be unobservable at intermediate lattice spacings. This is what seems
to happen with a large smearing parameter.

The results presented above might be subject to some systematic uncertainties: The volumes
are relatively small, so that finite volume effects might influence the analysis. Therefore in the
future more and bigger volumes should be used. This is especially true for small masses. Also it
might be beneficial to introduce more values of the quark mass. This is expected to stabilize the
fits to the binder cummulant which could than be used as a check whether the transition found is in
the Z(2) universality class. Finally one might use a refined ansatz for the fit function.
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Although the continuum value for the critical mass must be independent from the smearing
parameter it might be interesting to investigate whether one can find a relation between the smearing
dependence of the critical mass at several lattice spacings. If one is able to find a value of ρ at which
the critical mass decreases towards the continuum and one at which it increases it might be possible
to control the continuum limit from two sides. An other strategy might be to perform simulations
at a value of ρ at which the Nt = 4- and Nt = 6-value are the same to get a flatter continuum
extrapolation. Also it would be interesting to investigate whether similar observation can be made
for different actions.

4. Summary

The behavior of the critical mass of the second order endpoint at low quark mass and µ = 0
in the N f = 3 case for an unimproved Wilson gauge action and stout smeared staggered quarks
was studied. It was found that it shows a pronounced dependence on the smearing parameter ρ

at Nt = 4 lattices and a much milder behavior at Nt = 6 lattices. There are indications that the
transition vanishes for certain smearing parameters on Nt = 4 lattices. To confirm the presented
results further investigations using more volumes and/or quark masses are required
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