Update on the critical endpoint of the finite temperature phase transition for three flavor QCD with clover type fermions

Yoshifumi Nakamuraa,b, Xiao-Yong Jina,†, Yoshinobu Kuramashic,d,a, Shinji Takedac,d,a, Akira Ukawaa

aRIKEN Advanced Institute for Computational Science, Kobe, Hyogo 650-0047, Japan
bGraduate School of System Informatics, Department of Computational Sciences, Kobe University, Kobe, Hyogo 657-8501, Japan
cFaculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8571, Japan
dCenter for Computational Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan
eInstitute of Physics, Kanazawa University, Kanazawa 920-1192, Japan

E-mail: nakamura@riken.jp

We presented “Critical endpoint of finite temperature phase transition for three flavor QCD”, results for the critical endpoint of finite temperature phase transition of $N_f=3$ QCD at zero chemical potential. We employ the renormalization-group improved Iwasaki gauge action and non-perturbatively $O(a)$-improved Wilson-clover fermion action. The critical endpoint is determined by using the intersection point of kurtosis for the temporal size $N_t=4, 6, 8$. Spatial sizes of $N_l=6-16$ ($N_t=4$), 10–24 ($N_t=6$), and 12–24 ($N_t=8$) are employed.

Reference:
Xiao-Yong Jin, Yoshinobu Kuramashi, Yoshifumi Nakamura, Shinji Takeda, Akira Ukawa,
Critical endpoint of finite temperature phase transition for three flavor QCD,

The 32nd International Symposium on Lattice Field Theory
23-28 June, 2013
Columbia University New York, NY

†Present address: Argonne Leadership Computing Facility, Argonne National Laboratory, Argonne, Illinois 60439, USA

© Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike Licence. http://pos.sissa.it/