

Update on the critical endpoint of the finite temperature phase transition for three flavor QCD with clover type fermions

Yoshifumi Nakamura^{* *a,b*}, Xiao-Yong Jin^{*a*⁺}, Yoshinobu Kuramashi^{*c,d,a*}, Shinji Takeda^{*e,a*}, Akira Ukawa^{*a*}

^aRIKEN Advanced Institute for Computational Science, Kobe, Hyogo 650-0047, Japan ^bGraduate School of System Informatics, Department of Computational Sciences, Kobe University, Kobe, Hyogo 657-8501, Japan

^c Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8571, Japan

^dCenter for Computational Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan
^eInstitute of Physics, Kanazawa University, Kanazawa 920-1192, Japan *E-mail:* nakamura@riken.jp

We presented "Critical endpoint of finite temperature phase transition for three flavor QCD", results for the critical endpoint of finite temperature phase transition of $N_f = 3$ QCD at zero chemical potential. We employ the renormalization-group improved Iwasaki gauge action and non-perturbatively O(a)-improved Wilson-clover fermion action. The critical endpoint is determined by using the intersection point of kurtosis for the temporal size N_t =4, 6, 8. Spatial sizes of N_t =6–16 (N_t =4), 10–24 (N_t =6), and 12–24 (N_t =8) are employed.

Reference:

Xiao-Yong Jin, Yoshinobu Kuramashi, Yoshifumi Nakamura, Shinji Takeda, Akira Ukawa, Critical endpoint of finite temperature phase transition for three flavor QCD, Phys. Rev. D in press. [arXiv:1411.7461].

The 32nd International Symposium on Lattice Field Theory 23-28 June, 2013 Columbia University New York, NY

*Speaker.

[†]Present address: Argonne Leadership Computing Facility, Argonne National Laboratory, Argonne, Illinois 60439, USA